scispace - formally typeset
Open AccessJournal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TLDR
Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract
We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

read more

Citations
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Single-layer MoS2 transistors

TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Journal ArticleDOI

Superior Thermal Conductivity of Single-Layer Graphene

TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
References
More filters
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Journal ArticleDOI

Nanotube molecular wires as chemical sensors

TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Journal ArticleDOI

Intercalation compounds of graphite

TL;DR: A broad review of recent research work on the preparation and the remarkable properties of intercalation compounds of graphite can be found in this paper, covering a wide range of topics from the basic chemistry, physics and materials science to engineering applications.
Journal ArticleDOI

Organic thin-film transistors: a review of recent advances

TL;DR: This paper review in more detail related work that originated at IBM during the last four years and has led to the fabrication of high-performance organic transistors on flexible, transparent plastic substrates requiring low operating voltages.
Journal ArticleDOI

Graphitic cones and the nucleation of curved carbon surfaces

TL;DR: In this paper, the authors reported an unusual carbon sample generated by pyrolysis of hydrocarbons, consisting entirely of graphitic microstructures with total disclinations that are multiples of +60°.
Related Papers (5)