scispace - formally typeset
Journal ArticleDOI

Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films

Donald W. Brenner
- 15 Nov 1990 - 
- Vol. 42, Iss: 15, pp 9458-9471
Reads0
Chats0
TLDR
An empirical many-body potential-energy expression is developed for hydrocarbons that can model intramolecular chemical bonding in a variety of small hydrocarbon molecules as well as graphite and diamond lattices based on Tersoff's covalent-bonding formalism with additional terms that correct for an inherent overbinding of radicals.
Abstract
An empirical many-body potential-energy expression is developed for hydrocarbons that can model intramolecular chemical bonding in a variety of small hydrocarbon molecules as well as graphite and diamond lattices. The potential function is based on Tersoff's covalent-bonding formalism with additional terms that correct for an inherent overbinding of radicals and that include nonlocal effects. Atomization energies for a wide range of hydrocarbon molecules predicted by the potential compare well to experimental values. The potential correctly predicts that the \ensuremath{\pi}-bonded chain reconstruction is the most stable reconstruction on the diamond {111} surface, and that hydrogen adsorption on a bulk-terminated surface is more stable than the reconstruction. Predicted energetics for the dimer reconstructed diamond {100} surface as well as hydrogen abstraction and chemisorption of small molecules on the diamond {111} surface are also given. The potential function is short ranged and quickly evaluated so it should be very useful for large-scale molecular-dynamics simulations of reacting hydrocarbon molecules.

read more

Citations
More filters
Journal ArticleDOI

On the Water−Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes

TL;DR: In this paper, a linear relationship between the contact angle and the water monomer binding energy on graphite was established and a new route to calibrate interaction potential parameters was presented, which was obtained by applying a carbon−oxygen Lennard-Jones potential with parameters eCO = 0.392 kJ mol-1 and σCO = 3.19 A.
Journal ArticleDOI

Mechanics of carbon nanotubes

TL;DR: The theoretical predictions and the experimental techniques that are most often used for the challenging tasks of visualizing and manipulating these tiny structures are reviewed and the computational approaches taken, including ab initio quantum mechanical simulations, classical molecular dynamics, and continuum models are outlined.
Journal ArticleDOI

Thermal conductivity of carbon nanotubes

TL;DR: In this article, the thermal conductivity of nanotubes' dependence on structure, defects and vacancies was studied using the empirical bond order dependent force field, and it was shown that the carbon nanotube bundles have very high thermal conductivities comparable to diamond crystal and in-plane graphite sheet.
Journal ArticleDOI

QM/MM: what have we learned, where are we, and where do we go from here?

TL;DR: A review of the most popular methods for combined quantum mechanical/molecular mechanical (QM/MM) calculations, including their advantages and disadvantages, can be found in this article.
Journal ArticleDOI

Ion and electron irradiation-induced effects in nanostructured materials

TL;DR: In this article, the authors review recent progress in the understanding of effects of irradiation on various zero-dimensional and one-dimensional nanoscale systems, such as semiconductor and metal nanoclusters and nanowires, nanotubes, and fullerenes.