scispace - formally typeset
Open Access

Enabling techniques for low power, high performance fractional-N frequency synthesizers

TLDR
The calibration technique results in improved phase noise performance by adjusting the digital-to-analog converter gain, and thus providing better matching between the phase-locked loop circuitry and digital- to-analogue converter.
Abstract
Delta-sigma fractional-N phase-locked loops are used to generate high quality radio-frequency signals for use in wireless applications. To reduce the phase noise inherent to these systems, a digital-to-analog converter is used to cancel the error introduced by the fractional division process, however matching between the digital-to-analog converter and the phase-locked loop circuitry place a limit on the amount of phase noise reduction that can be achieved. Furthermore, circuit non-linearity results in the appearance of spurious tones in the phase-locked loop output. This dissertation outlines a calibration technique, and a digital quantization technique that provide solutions to these two problems. The calibration technique results in improved phase noise performance by adjusting the digital-to-analog converter gain, and thus providing better matching between the phase-locked loop circuitry and digital-to-analog converter. The digital quantization technique results in no spurious tones when specified non- linearity is applied to the quantizer output sequence and error. The calibration technique was implemented in an integrated circuit, which achieves state-of-the-art performance when compared to currently published phase- locked loops and allows for all circuitry to be integrated onto a single chip. Chapter 1 presents the calibration technique, as well as a theoretical analysis of the stability. Chapter 2 presents details on the digital quantization technique, and a mathematical proof of the absence of spurious tones. In chapter 3, results from an implemented circuit are presented, which verify the behaviour of the technique presented in chapter 1

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article

Dithered Quantizers

TL;DR: In this paper, a unified derivation and presentation of two forms of dithered quantizer noise based on elementary Fourier techniques is provided, both subtractive and nonsubtractive.
Book ChapterDOI

The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES

Thomas H. Lee
TL;DR: In this paper, an expanded and thoroughly revised edition of Thomas H. Lee's acclaimed guide to the design of gigahertz RF integrated circuits features a completely new chapter on the principles of wireless systems.
References
More filters
Book

Probability, random variables, and stochastic processes

TL;DR: In this paper, the meaning of probability and random variables are discussed, as well as the axioms of probability, and the concept of a random variable and repeated trials are discussed.
Book

Discrete-Time Signal Processing

TL;DR: In this paper, the authors provide a thorough treatment of the fundamental theorems and properties of discrete-time linear systems, filtering, sampling, and discrete time Fourier analysis.
Journal Article

The design of CMOS radio-frequency integrated circuits, 2nd edition

TL;DR: This expanded and thoroughly revised edition of Thomas H. Lee's acclaimed guide to the design of gigahertz RF integrated circuits features a completely new chapter on the principles of wireless systems.
Book

The Design of CMOS Radio-Frequency Integrated Circuits

TL;DR: In this article, the authors present an expanded and thoroughly revised edition of Tom Lee's acclaimed guide to the design of gigahertz RF integrated circuits, which is packed with physical insights and design tips, and includes a historical overview of the field in context.