scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Face identification from low resolution near-infrared images

TL;DR: It is shown that learned features contribute considerably to the performance of identification algorithm, and that using both feature level and score level fusion in a hierarchal approach gives good performance.
Abstract: Face identification from low quality and low resolution Near-Infrared (NIR) face images is a challenging problem. Since surveillance cameras typically acquire images at a large standoff distance, the effective resolution of the face is not large enough to identify the individuals. Moreover for a 24-hour surveillance footage, images in low light and at nighttime are acquired in NIR mode which makes the identification problem even more challenging. We propose an effective method using both hand-crafted and learned features for face identification of low resolution NIR images. We show that learned features contribute considerably to the performance of identification algorithm, and that using both feature level and score level fusion in a hierarchal approach gives good performance. The results demonstrate the effectiveness of the proposed approach on images which are of low quality, low resolution and acquired under challenging illumination conditions in near-infrared mode by surveillance cameras.
Citations
More filters
Journal ArticleDOI
TL;DR: Major deep learning concepts pertinent to face image analysis and face recognition are reviewed, and a concise overview of studies on specific face recognition problems is provided, such as handling variations in pose, age, illumination, expression, and heterogeneous face matching.

312 citations

Journal ArticleDOI
TL;DR: This study applies multi-view learning to violent behavior recognition of still images, and can be useful for the research of network image or video information monitoring and filtering.

33 citations


Cites background from "Face identification from low resolu..."

  • ...DSIFT features are one of the most popular image features for their eff ctiveness and robustness [28][29]....

    [...]

Proceedings ArticleDOI
01 Jun 2018
TL;DR: The proposed Synthesis via Hierarchical Sparse Representation (SHSR) algorithm for synthesizing a high resolution face image from a low resolution input image demonstrates the efficacy of the proposed algorithm in terms of both face identification and image quality measures.
Abstract: Enhancing low resolution images via super-resolution or synthesis algorithms for cross-resolution face recognition has been well studied. Several image processing and machine learning paradigms have been explored for addressing the same. In this research, we propose Synthesis via Hierarchical Sparse Representation (SHSR) algorithm for synthesizing a high resolution face image from a low resolution input image. The proposed algorithm learns multilevel sparse representation for both high and low resolution gallery images, along with identity aware dictionaries and a transformation function between the two representations for face identification scenarios. With low resolution test data as input, a high resolution test image is synthesized using the identity aware dictionaries and transformation, which is then used for face recognition. The performance of the proposed SHSR algorithm is evaluated on four datasets, including one real world dataset. Experimental results and comparison with seven existing algorithms demonstrate the efficacy of the proposed algorithm in terms of both face identification and image quality measures.

27 citations


Cites methods from "Face identification from low resolu..."

  • ...In future, we plan to extend the proposed synthesis based approach for (i) face recogntion in videos for frame selection and enhancement [15], (ii) disguised face recognition [6, 7, 21] where it can also be used to remove the effect of disguise, and (iii) face recognition in low resolution nearinfrared images [14]....

    [...]

Journal ArticleDOI
31 Mar 2020
TL;DR: This paper proposes a Subclass Heterogeneity Aware Loss (SHEAL) to train a deep convolutional neural network model such that it produces embeddings suitable for heterogeneous face recognition, both single and multiple heterogeneities.
Abstract: One of the most challenging scenarios of face recognition is matching images in presence of multiple covariates such as cross-spectrum and cross-resolution. In this paper, we propose a Subclass Heterogeneity Aware Loss (SHEAL) to train a deep convolutional neural network model such that it produces embeddings suitable for heterogeneous face recognition, both single and multiple heterogeneities. The performance of the proposed SHEAL function is evaluated on four databases in terms of the recognition performance as well as convergence in time and epochs. We observe that SHEAL not only yields state-of-the-art results for the most challenging case of Cross-Spectral Cross-Resolution face recognition, it also achieves excellent performance on homogeneous face recognition.

11 citations

Journal ArticleDOI
TL;DR: A Supervised Resolution Enhancement and Recognition Network (SUPREAR-NET), which does not corrupt the useful class-specific information of the face image and transforms a low resolution probe image into a high resolution one, followed by effective matching with the gallery using a trained discriminative model.
Abstract: Heterogeneous face recognition is a challenging problem where the probe and gallery images belong to different modalities such as, low and high resolution, visible and near-infrared spectrum. A Generative Adversarial Network (GAN) enables us to learn an image to image transformation model for enhancing the resolution of a face image. Such a model would be helpful in a heterogeneous face recognition scenario. However, unsupervised GAN based transformation methods in their native formulation might alter useful discriminative information in the transformed face images. This affects the performance of face recognition algorithms when applied on the transformed images. We propose a Supervised Resolution Enhancement and Recognition Network (SUPREAR-NET), which does not corrupt the useful class-specific information of the face image and transforms a low resolution probe image into a high resolution one, followed by effective matching with the gallery using a trained discriminative model. We show the results for cross-resolution face recognition on three datasets including the FaceSurv face dataset, containing poor quality low resolution videos captured at a standoff distance up to 10 meters from the camera. On the FaceSurv, NIST MEDS and CMU MultiPIE datasets, the proposed algorithm outperforms recent unsupervised and supervised GAN algorithms.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations

Journal ArticleDOI
22 Dec 2000-Science
TL;DR: Locally linear embedding (LLE) is introduced, an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs that learns the global structure of nonlinear manifolds.
Abstract: Many areas of science depend on exploratory data analysis and visualization. The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs. Unlike clustering methods for local dimensionality reduction, LLE maps its inputs into a single global coordinate system of lower dimensionality, and its optimizations do not involve local minima. By exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds, such as those generated by images of faces or documents of text.

15,106 citations


"Face identification from low resolu..." refers background in this paper

  • ...Most of the face recognition algorithms for low quality images have used sophisticated restoration and preprocessing methods prior to recognition [16]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates is described. But the detection performance is limited to 15 frames per second.
Abstract: This paper describes a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image” which allows the features used by our detector to be computed very quickly. The second is a simple and efficient classifier which is built using the AdaBoost learning algorithm (Freund and Schapire, 1995) to select a small number of critical visual features from a very large set of potential features. The third contribution is a method for combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions. A set of experiments in the domain of face detection is presented. The system yields face detection performance comparable to the best previous systems (Sung and Poggio, 1998; Rowley et al., 1998; Schneiderman and Kanade, 2000; Roth et al., 2000). Implemented on a conventional desktop, face detection proceeds at 15 frames per second.

13,037 citations

Proceedings ArticleDOI
07 Jul 2001
TL;DR: A new image representation called the “Integral Image” is introduced which allows the features used by the detector to be computed very quickly and a method for combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions.
Abstract: This paper describes a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the "Integral Image" which allows the features used by our detector to be computed very quickly. The second is a simple and efficient classifier which is built using the AdaBoost learning algo- rithm (Freund and Schapire, 1995) to select a small number of critical visual features from a very large set of potential features. The third contribution is a method for combining classifiers in a "cascade" which allows back- ground regions of the image to be quickly discarded while spending more computation on promising face-like regions. A set of experiments in the domain of face detection is presented. The system yields face detection perfor- mance comparable to the best previous systems (Sung and Poggio, 1998; Rowley et al., 1998; Schneiderman and Kanade, 2000; Roth et al., 2000). Implemented on a conventional desktop, face detection proceeds at 15 frames per second.

10,592 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an up-to-date critical survey of still-and video-based face recognition research, and provide some insights into the studies of machine recognition of faces.
Abstract: As one of the most successful applications of image analysis and understanding, face recognition has recently received significant attention, especially during the past several years. At least two reasons account for this trend: the first is the wide range of commercial and law enforcement applications, and the second is the availability of feasible technologies after 30 years of research. Even though current machine recognition systems have reached a certain level of maturity, their success is limited by the conditions imposed by many real applications. For example, recognition of face images acquired in an outdoor environment with changes in illumination and/or pose remains a largely unsolved problem. In other words, current systems are still far away from the capability of the human perception system.This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition, relevant topics such as psychophysical studies, system evaluation, and issues of illumination and pose variation are covered.

6,384 citations