scispace - formally typeset
Journal ArticleDOI

Far Infrared and Submillimeter Emission from Galactic and Extragalactic Photo-Dissociation Regions

Reads0
Chats0
TLDR
In this article, the effects of metallicity and cloud extinction on the predicted line intensities were examined for PDR models with densities over the range n=10^1-10^7 cm^-3.
Abstract
Photodissociation Region (PDR) models are computed over a wide range of physical conditions, from those appropriate to giant molecular clouds illuminated by the interstellar radiation field to the conditions experienced by circumstellar disks very close to hot massive stars. These models use the most up-to-date values of atomic and molecular data, the most current chemical rate coefficients, and the newest grain photoelectric heating rates which include treatments of small grains and large molecules. In addition, we examine the effects of metallicity and cloud extinction on the predicted line intensities. Results are presented for PDR models with densities over the range n=10^1-10^7 cm^-3 and for incident far-ultraviolet radiation fields over the range G_0=10^-0.5-10^6.5, for metallicities Z=1 and 0.1 times the local Galactic value, and for a range of PDR cloud sizes. We present line strength and/or line ratio plots for a variety of useful PDR diagnostics: [C II] 158 micron, [O I] 63 and 145 micron, [C I] 370 and 609 micron, CO J=1-0, J=2-1, J=3-2, J=6-5 and J=15-14, as well as the strength of the far-infrared continuum. These plots will be useful for the interpretation of Galactic and extragalactic far infrared and submillimeter spectra observable with ISO, SOFIA, SWAS, FIRST and other orbital and suborbital platforms. As examples, we apply our results to ISO and ground based observations of M82, NGC 278, and the Large Magellenic Cloud.

read more

Citations
More filters
Journal ArticleDOI

A Herschel mapping of [C ii], [O i] and [O iii] lines from the circumnuclear region of M31

TL;DR: In this paper, the authors presented the first FIR spectroscopic mapping of the circumnuclear region of M31 in [C ii] 158 um, [O i] 63 um and [O iii] 88 um lines with the Herschel Space Observatory, covering a ~500 x 500 pc (2' x 2') field.
Journal ArticleDOI

C i and CO in nearby spiral galaxies. I. Line ratio and abundance variations at ~200 pc scales

TL;DR: In this paper , the authors present new neutral atomic carbon [CI](3P1-3P0) mapping observations within the inner ~7 kpc and ~4 kpc of the disks of NGC3627 and NGC4321 at a spatial resolution of 190 pc and 270 pc, respectively, using the ALMA Atacama Compact Array (ACA).
Journal ArticleDOI

Mid-J CO Shock Tracing Observations of Infrared Dark Clouds I

TL;DR: In this paper, the authors present observations of the CO J = 8-7, 9-8, and 10-9 transitions, taken with the Herschel Space Observatory, towards four dense, starless clumps within IRDCs (C1, F1, and F2) at intensity levels greater than expected from photodissociation region (PDR) models.
Journal ArticleDOI

Tracing star formation in nearby galaxies

S. Hony
TL;DR: In this paper, the authors discuss how the tracers that we have for determining the star formation efficiency are affected by low metallicity and more bursty star formation in dwarf galaxies, in particular the applicability of CO to trace the dense molecular clouds where star formation may occur.
Related Papers (5)