scispace - formally typeset
Journal ArticleDOI

Far Infrared and Submillimeter Emission from Galactic and Extragalactic Photo-Dissociation Regions

Reads0
Chats0
TLDR
In this article, the effects of metallicity and cloud extinction on the predicted line intensities were examined for PDR models with densities over the range n=10^1-10^7 cm^-3.
Abstract
Photodissociation Region (PDR) models are computed over a wide range of physical conditions, from those appropriate to giant molecular clouds illuminated by the interstellar radiation field to the conditions experienced by circumstellar disks very close to hot massive stars. These models use the most up-to-date values of atomic and molecular data, the most current chemical rate coefficients, and the newest grain photoelectric heating rates which include treatments of small grains and large molecules. In addition, we examine the effects of metallicity and cloud extinction on the predicted line intensities. Results are presented for PDR models with densities over the range n=10^1-10^7 cm^-3 and for incident far-ultraviolet radiation fields over the range G_0=10^-0.5-10^6.5, for metallicities Z=1 and 0.1 times the local Galactic value, and for a range of PDR cloud sizes. We present line strength and/or line ratio plots for a variety of useful PDR diagnostics: [C II] 158 micron, [O I] 63 and 145 micron, [C I] 370 and 609 micron, CO J=1-0, J=2-1, J=3-2, J=6-5 and J=15-14, as well as the strength of the far-infrared continuum. These plots will be useful for the interpretation of Galactic and extragalactic far infrared and submillimeter spectra observable with ISO, SOFIA, SWAS, FIRST and other orbital and suborbital platforms. As examples, we apply our results to ISO and ground based observations of M82, NGC 278, and the Large Magellenic Cloud.

read more

Citations
More filters
Journal ArticleDOI

Dust, ice and gas in time (DIGIT): Herschel and Spitzer spectro-imaging of SMM3 and SMM4 in Serpens

TL;DR: In this article, the authors used mid-and far-infrared observations from the Spitzer Infrared Spectrograph (IRS) and the Herschel Photodetector Array Camera and Spectrometer (PACS) to constrain the physical conditions around the embedded protostars SMM3 and SMM4 in the Serpens molecular cloud core and measure the CO/H$2}$ ratio in warm gas.
Journal ArticleDOI

Pdr model mapping of physical conditions via spitzer/irs spectroscopy of h2: theoretical success toward ngc 2023-south

TL;DR: In this paper, the authors used the Infrared Spectrograph on Spitzer to observe the southern part of the reflection nebula NGC 2023, including the Southern Ridge, which is a photodissociation region (PDR) par excellence excited by HD 37903.
Related Papers (5)