scispace - formally typeset
Proceedings ArticleDOI

Fast shortest path distance estimation in large networks

Reads0
Chats0
TLDR
This paper proves that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed, and explores theoretical insights to devise a variety of simple methods that scale well in very large networks.
Abstract
In this paper we study approximate landmark-based methods for point-to-point distance estimation in very large networks. These methods involve selecting a subset of nodes as landmarks and computing offline the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, it can be estimated quickly by combining the precomputed distances. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. We therefore explore theoretical insights to devise a variety of simple methods that scale well in very large networks. The efficiency of the suggested techniques is tested experimentally using five real-world graphs having millions of edges. While theoretical bounds support the claim that random landmarks work well in practice, our extensive experimentation shows that smart landmark selection can yield dramatically more accurate results: for a given target accuracy, our methods require as much as 250 times less space than selecting landmarks at random. In addition, we demonstrate that at a very small accuracy loss our techniques are several orders of magnitude faster than the state-of-the-art exact methods. Finally, we study an application of our methods to the task of social search in large graphs.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Fast Exact Shortest-Path Distance Queries on Large Networks by Pruned Landmark Labeling

TL;DR: This work proposes a new exact method for shortest-path distance queries on large-scale networks that can handle social networks and web graphs with hundreds of millions of edges, which are two orders of magnitude larger than the limits of previous exact methods.
Proceedings ArticleDOI

Fast exact shortest-path distance queries on large networks by pruned landmark labeling

TL;DR: In this article, a new exact method for shortest-path distance queries on large-scale networks is proposed, where the key ingredient introduced here is pruning during breadth-first searches.
Journal ArticleDOI

Shortest-path queries in static networks

TL;DR: This survey reviews selected approaches, algorithms, and results on shortest-path queries from these fields, with the main focus lying on the tradeoff between the index size and the query time.
Proceedings ArticleDOI

Fast and accurate estimation of shortest paths in large graphs

TL;DR: This paper presents a scalable sketch-based index structure that not only supports estimation of node distances, but also computes corresponding shortest paths themselves, leading to near-exact shortest-path approximations in real world graphs.
References
More filters
Journal ArticleDOI

A note on two problems in connexion with graphs

TL;DR: A tree is a graph with one and only one path between every two nodes, where at least one path exists between any two nodes and the length of each branch is given.
Book

Introduction to Algorithms

TL;DR: The updated new edition of the classic Introduction to Algorithms is intended primarily for use in undergraduate or graduate courses in algorithms or data structures and presents a rich variety of algorithms and covers them in considerable depth while making their design and analysis accessible to all levels of readers.
Journal ArticleDOI

Community structure in social and biological networks

TL;DR: This article proposes a method for detecting communities, built around the idea of using centrality indices to find community boundaries, and tests it on computer-generated and real-world graphs whose community structure is already known and finds that the method detects this known structure with high sensitivity and reliability.
Journal ArticleDOI

Finding and evaluating community structure in networks.

TL;DR: It is demonstrated that the algorithms proposed are highly effective at discovering community structure in both computer-generated and real-world network data, and can be used to shed light on the sometimes dauntingly complex structure of networked systems.
Book

Modern Information Retrieval

TL;DR: In this article, the authors present a rigorous and complete textbook for a first course on information retrieval from the computer science (as opposed to a user-centred) perspective, which provides an up-to-date student oriented treatment of the subject.