scispace - formally typeset
Journal ArticleDOI

Forced thermal ratchets.

Reads0
Chats0
TLDR
In this paper, the authors considered a Brownian particle in a periodic potential under heavy damping and showed that if the particle is subject to an external force having time correlations, detailed balance is lost and the particle can exhibit a nonzero net drift speed.
Abstract
We consider a Brownian particle in a periodic potential under heavy damping. The second law forbids it from displaying any net drift speed, even if the symmetry of the potential is broken. But if the particle is subject to an external force having time correlations, detailed balance is lost and the particle can exhibit a nonzero net drift speed. Thus, broken symmetry and time correlations are sufficient ingredients for transport.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Microfluidics: Fluid physics at the nanoliter scale

TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Journal ArticleDOI

Collective Motion

TL;DR: In this paper, the basic laws describing the essential aspects of collective motion are reviewed and a discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, are provided.
Journal ArticleDOI

Brownian motors: noisy transport far from equilibrium

TL;DR: In this paper, the main emphasis is put on directed transport in so-called Brownian motors (ratchets), i.e. a dissipative dynamics in the presence of thermal noise and some prototypical perturbation that drives the system out of equilibrium without introducing a priori an obvious bias into one or the other direction of motion.
Journal ArticleDOI

Artificial Brownian motors: Controlling transport on the nanoscale

TL;DR: In this paper, the constructive role of Brownian motion is exemplified for various physical and technological setups, which are inspired by the cellular molecular machinery: the working principles and characteristics of stylized devices are discussed to show how fluctuations, either thermal or extrinsic, can be used to control diffusive particle transport.
Journal ArticleDOI

The Yeast Nuclear Pore Complex: Composition, Architecture, and Transport Mechanism

TL;DR: In this paper, a comprehensive approach to classify all components of the yeast NPC (nucleoporins) was taken, which involved identifying all the proteins present in a highly enriched NPC fraction, determining which of these proteins were nucleopors, and localizing each nucleoporin within the NPC.
References
More filters
Book

Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology

TL;DR: The Symbiosis of Noise and Order - Concluding Remarks as discussed by the authors is based on Probability Theory and Markovian Dichotomous Noise: An Exactly Soluble Colored-Noise Case.