scispace - formally typeset
Open AccessProceedings Article

Gated Graph Sequence Neural Networks.

TLDR
This work studies feature learning techniques for graph-structured inputs and achieves state-of-the-art performance on a problem from program verification, in which subgraphs need to be matched to abstract data structures.
Abstract
Graph-structured data appears frequently in domains including chemistry, natural language semantics, social networks, and knowledge bases. In this work, we study feature learning techniques for graph-structured inputs. Our starting point is previous work on Graph Neural Networks (Scarselli et al., 2009), which we modify to use gated recurrent units and modern optimization techniques and then extend to output sequences. The result is a flexible and broadly useful class of neural network models that has favorable inductive biases relative to purely sequence-based models (e.g., LSTMs) when the problem is graph-structured. We demonstrate the capabilities on some simple AI (bAbI) and graph algorithm learning tasks. We then show it achieves state-of-the-art performance on a problem from program verification, in which subgraphs need to be matched to abstract data structures.

read more

Citations
More filters
Posted Content

Semi-Supervised Classification with Graph Convolutional Networks

TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.
Posted Content

Inductive Representation Learning on Large Graphs

TL;DR: GraphSAGE is presented, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data and outperforms strong baselines on three inductive node-classification benchmarks.
Proceedings ArticleDOI

node2vec: Scalable Feature Learning for Networks

TL;DR: Node2vec as mentioned in this paper learns a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes by using a biased random walk procedure.
Journal ArticleDOI

A Comprehensive Survey on Graph Neural Networks

TL;DR: This article provides a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields and proposes a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNS, convolutional GNN’s, graph autoencoders, and spatial–temporal Gnns.
Posted Content

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

TL;DR: In this article, a spectral graph theory formulation of convolutional neural networks (CNNs) was proposed to learn local, stationary, and compositional features on graphs, and the proposed technique offers the same linear computational complexity and constant learning complexity as classical CNNs while being universal to any graph structure.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Learning Phrase Representations using RNN Encoder--Decoder for Statistical Machine Translation

TL;DR: In this paper, the encoder and decoder of the RNN Encoder-Decoder model are jointly trained to maximize the conditional probability of a target sequence given a source sequence.
Posted Content

Neural Machine Translation by Jointly Learning to Align and Translate

TL;DR: In this paper, the authors propose to use a soft-searching model to find the parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly.
Proceedings ArticleDOI

DeepWalk: online learning of social representations

TL;DR: DeepWalk as mentioned in this paper uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences, which encode social relations in a continuous vector space, which is easily exploited by statistical models.
Related Papers (5)