scispace - formally typeset
Open AccessJournal ArticleDOI

Geologically current plate motions

Reads0
Chats0
TLDR
MORVEL as discussed by the authors is a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface.
Abstract
SUMMARY We describe best-fitting angular velocities and MORVEL, a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface. Seafloor spreading rates and fault azimuths are used to determine the motions of 19 plates bordered by mid-ocean ridges, including all the major plates. Six smaller plates with little or no connection to the mid-ocean ridges are linked to MORVEL with GPS station velocities and azimuthal data. By design, almost no kinematic information is exchanged between the geologically determined and geodetically constrained subsets of the global circuit—MORVEL thus averages motion over geological intervals for all the major plates. Plate geometry changes relative to NUVEL-1A include the incorporation of Nubia, Lwandle and Somalia plates for the former Africa plate, Capricorn, Australia and Macquarie plates for the former Australia plate, and Sur and South America plates for the former South America plate. MORVEL also includes Amur, Philippine Sea, Sundaland and Yangtze plates, making it more useful than NUVEL-1A for studies of deformation in Asia and the western Pacific. Seafloor spreading rates are estimated over the past 0.78 Myr for intermediate and fast spreading centres and since 3.16 Ma for slow and ultraslow spreading centres. Rates are adjusted downward by 0.6–2.6 mm yr−1 to compensate for the several kilometre width of magnetic reversal zones. Nearly all the NUVEL-1A angular velocities differ significantly from the MORVEL angular velocities. The many new data, revised plate geometries, and correction for outward displacement thus significantly modify our knowledge of geologically current plate motions. MORVEL indicates significantly slower 0.78-Myr-average motion across the Nazca–Antarctic and Nazca–Pacific boundaries than does NUVEL-1A, consistent with a progressive slowdown in the eastward component of Nazca plate motion since 3.16 Ma. It also indicates that motions across the Caribbean–North America and Caribbean–South America plate boundaries are twice as fast as given by NUVEL-1A. Summed, least-squares differences between angular velocities estimated from GPS and those for MORVEL, NUVEL-1 and NUVEL-1A are, respectively, 260 per cent larger for NUVEL-1 and 50 per cent larger for NUVEL-1A than for MORVEL, suggesting that MORVEL more accurately describes historically current plate motions. Significant differences between geological and GPS estimates of Nazca plate motion and Arabia–Eurasia and India–Eurasia motion are reduced but not eliminated when using MORVEL instead of NUVEL-1A, possibly indicating that changes have occurred in those plate motions since 3.16 Ma. The MORVEL and GPS estimates of Pacific–North America plate motion in western North America differ by only 2.6 ± 1.7 mm yr−1, ≈25 per cent smaller than for NUVEL-1A. The remaining difference for this plate pair, assuming there are no unrecognized systematic errors and no measurable change in Pacific–North America motion over the past 1–3 Myr, indicates deformation of one or more plates in the global circuit. Tests for closure of six three-plate circuits indicate that two, Pacific–Cocos–Nazca and Sur–Nubia–Antarctic, fail closure, with respective linear velocities of non-closure of 14 ± 5 and 3 ± 1 mm yr−1 (95 per cent confidence limits) at their triple junctions. We conclude that the rigid plate approximation continues to be tremendously useful, but—absent any unrecognized systematic errors—the plates deform measurably, possibly by thermal contraction and wide plate boundaries with deformation rates near or beneath the level of noise in plate kinematic data.

read more

Citations
More filters
Journal ArticleDOI

Constraints for the recent tectonics of the El Salvador Fault Zone, Central America Volcanic Arc, from morphotectonic analysis

TL;DR: In this article, the authors used hypsometric analysis to improve the understanding of the current tectonic deformation and structure of El Salvador Fault Zone; a N90°E oriented strike-slip fault zone that extends 150 km through El Salvador, Central America.
Journal ArticleDOI

Asthenospheric buoyancy and the origin of high-relief topography along the Cascadia forearc

TL;DR: In this article, the authors synthesize results from seismic imaging, geodetic (decadal) and geomorphic (millennial) uplift rates, erosion rates, topographic analysis, and characteristics of the megathrust interface, with a mechanical model to infer that buoyancy in the subslab asthenosphere influences the development and longevity of Cascadia's forearc topography.
Journal ArticleDOI

Late Holocene rupture behavior and earthquake chronology on the Hope fault, New Zealand

TL;DR: In this paper, the authors used radiocarbon dating of late Holocene sediments on the Hurunui segment of the Hope fault to derive an earthquake chronology that extends from the historic 1888 Mw 7.1 Amuri earthquake to ca. 300 C.E.
Journal ArticleDOI

Distribution of inundation by the great tsunami of the 2011 Mw 9.0 earthquake off the Pacific coast of Tohoku (Japan), as revealed by ALOS imagery data

TL;DR: In this article, the authors identify the distribution of tsunami inundation along a 340 km-long section of coast in northeast Honshu Island, based mainly on Advanced Land Observing Satellite (ALOS) imagery data and with cross-checking by aerial photographs and Google Earth images acquired before and after the 2011 earthquake.
References
More filters
Journal ArticleDOI

Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings

TL;DR: In this paper, a digital bathymetric map of the oceans with a horizontal resolution of 1 to 12 kilometers was derived by combining available depth soundings with high-resolution marine gravity information from the Geosat and ERS-1 spacecraft.
Journal ArticleDOI

Free software helps map and display data

TL;DR: The Generic Mapping Tools (GMT) is introduced, which is a free, public domain software package that can be used to manipulate columns of tabular data, time series, and gridded data sets and to display these data in a variety of forms ranging from simple x-y plots to maps and color, perspective, and shaded-relief illustrations.
Journal ArticleDOI

Current plate motions

TL;DR: A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used as discussed by the authors.
Journal ArticleDOI

Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions

TL;DR: In this article, the optimal recalibration of NUVEL-1 is proposed to multiply the angular velocities by a constant, α, of 0.9562, which is a compromise among slightly different calibrations appropriate for slow, medium, and fast rates of seafloor spreading.

Current plate motions

TL;DR: In this paper, a new global model (NUVEL-1) was proposed to describe the geologically current motion between 12 assumed-rigid plates by inverting plate motion data.
Related Papers (5)