scispace - formally typeset
Open AccessJournal ArticleDOI

Geologically current plate motions

Reads0
Chats0
TLDR
MORVEL as discussed by the authors is a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface.
Abstract
SUMMARY We describe best-fitting angular velocities and MORVEL, a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface. Seafloor spreading rates and fault azimuths are used to determine the motions of 19 plates bordered by mid-ocean ridges, including all the major plates. Six smaller plates with little or no connection to the mid-ocean ridges are linked to MORVEL with GPS station velocities and azimuthal data. By design, almost no kinematic information is exchanged between the geologically determined and geodetically constrained subsets of the global circuit—MORVEL thus averages motion over geological intervals for all the major plates. Plate geometry changes relative to NUVEL-1A include the incorporation of Nubia, Lwandle and Somalia plates for the former Africa plate, Capricorn, Australia and Macquarie plates for the former Australia plate, and Sur and South America plates for the former South America plate. MORVEL also includes Amur, Philippine Sea, Sundaland and Yangtze plates, making it more useful than NUVEL-1A for studies of deformation in Asia and the western Pacific. Seafloor spreading rates are estimated over the past 0.78 Myr for intermediate and fast spreading centres and since 3.16 Ma for slow and ultraslow spreading centres. Rates are adjusted downward by 0.6–2.6 mm yr−1 to compensate for the several kilometre width of magnetic reversal zones. Nearly all the NUVEL-1A angular velocities differ significantly from the MORVEL angular velocities. The many new data, revised plate geometries, and correction for outward displacement thus significantly modify our knowledge of geologically current plate motions. MORVEL indicates significantly slower 0.78-Myr-average motion across the Nazca–Antarctic and Nazca–Pacific boundaries than does NUVEL-1A, consistent with a progressive slowdown in the eastward component of Nazca plate motion since 3.16 Ma. It also indicates that motions across the Caribbean–North America and Caribbean–South America plate boundaries are twice as fast as given by NUVEL-1A. Summed, least-squares differences between angular velocities estimated from GPS and those for MORVEL, NUVEL-1 and NUVEL-1A are, respectively, 260 per cent larger for NUVEL-1 and 50 per cent larger for NUVEL-1A than for MORVEL, suggesting that MORVEL more accurately describes historically current plate motions. Significant differences between geological and GPS estimates of Nazca plate motion and Arabia–Eurasia and India–Eurasia motion are reduced but not eliminated when using MORVEL instead of NUVEL-1A, possibly indicating that changes have occurred in those plate motions since 3.16 Ma. The MORVEL and GPS estimates of Pacific–North America plate motion in western North America differ by only 2.6 ± 1.7 mm yr−1, ≈25 per cent smaller than for NUVEL-1A. The remaining difference for this plate pair, assuming there are no unrecognized systematic errors and no measurable change in Pacific–North America motion over the past 1–3 Myr, indicates deformation of one or more plates in the global circuit. Tests for closure of six three-plate circuits indicate that two, Pacific–Cocos–Nazca and Sur–Nubia–Antarctic, fail closure, with respective linear velocities of non-closure of 14 ± 5 and 3 ± 1 mm yr−1 (95 per cent confidence limits) at their triple junctions. We conclude that the rigid plate approximation continues to be tremendously useful, but—absent any unrecognized systematic errors—the plates deform measurably, possibly by thermal contraction and wide plate boundaries with deformation rates near or beneath the level of noise in plate kinematic data.

read more

Citations
More filters
Journal ArticleDOI

Global continental and ocean basin reconstructions since 200 Ma

TL;DR: In this paper, a new type of global plate motion model consisting of a set of continuously-closing topological plate polygons with associated plate boundaries and plate velocities since the break-up of the supercontinent Pangea is presented.
Journal Article

Digital isochrons of the world's ocean floor

TL;DR: In this article, a digital age grid of the ocean floor with a grid node interval of 6 arc min using a self-consistent set of global isochrons and associated plate reconstruction poles was created.
Journal ArticleDOI

The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries

TL;DR: Detailed geophysical measurements reveal features of the 2011 Tohoku-Oki megathrust earthquake and suggest the need to consider the potential for a future large earthquake just south of this event.
Journal ArticleDOI

A geodetic plate motion and Global Strain Rate Model

TL;DR: The Global Strain Rate Model (GSRM v.2.1) as mentioned in this paper is a new global model of plate motions and strain rates in plate boundary zones constrained by horizontal geodetic velocities.
Journal ArticleDOI

Geologically current motion of 56 plates relative to the no-net-rotation reference frame

TL;DR: The NNR-MORVEL56 set of geologically current relative plate angular velocities is derived in this article, which is the first set of angular veloci measured relative to the unique reference frame in which there is no net rotation of the lithosphere.
References
More filters
Journal ArticleDOI

Recent plate motions in the Galapagos area

TL;DR: In this article, relative and absolute models of instantaneous plate motions were derived to provide an accurate representation of recent plate motions in the east Pacific and the existence of a self-consistent model that fits all the relative motion data provided strong support for the hypothesis that plates behave rigidly.
Journal ArticleDOI

Decelerating Nazca-South America and Nazca-Pacific Plate motions

TL;DR: In this article, space geodetic estimates of the rate of Nazca-South America convergence and spreading averaging over several years show that present day rates are significantly slower than the 3 million year average NUVEL-1A model.
Journal ArticleDOI

Segmentation of the Pacific‐Nazca Spreading Center, 1°N–20°S

TL;DR: A continuous Sea Beam swath along 2500 km of the crest of the fast-spreading East Pacific Rise (EPR) defines the location and morphology of seven systems of spreading centers as mentioned in this paper.
Journal ArticleDOI

Relative motion between the Caribbean and North American plates and related boundary zone deformation from a decade of GPS observations

TL;DR: In this article, the authors used GPS data to estimate the eastward motion of the Caribbean plate at a rate of 21 ± 1 mm/yr (1 standard error ) in the vicinity of southern Dominican Republic, a factor of 2 higher than the NUVEL-1A plate motion model prediction of 11 ± 3 mm /yr.
Journal ArticleDOI

Plume‐ridge interactions of the Discovery and Shona mantle plumes with the southern Mid‐Atlantic Ridge (40°‐55°S)

TL;DR: In this paper, 66 Pb, Sr, and Nd isotope analyses of basalts dredged along the Mid-Atlantic Ridge (MAR) from 40° to 55°S were performed and the results strongly indicate interaction and mixing between the off-ridge Discovery and ridge-centered Shona mantle plumes and the ambient asthenosphere.
Related Papers (5)