scispace - formally typeset
Journal ArticleDOI

Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems

Bernhard Lehner, +1 more
- 15 Jul 2013 - 
- Vol. 27, Iss: 15, pp 2171-2186
Reads0
Chats0
TLDR
A new modeling framework that integrates hydrographic baseline data at a global scale with new modeling tools, specifically a river network routing model (HydroROUT) that is currently under development that is designed to provide an avenue for advanced hydro-ecological applications at large scales in a consistent and highly versatile way is presented.
Abstract
Despite significant recent advancements, global hydrological models and their input databases still show limited capabilities in supporting many spatially detailed research questions and integrated assessments, such as required in freshwater ecology or applied water resources management. In order to address these challenges, the scientific community needs to create improved large-scale datasets and more flexible data structures that enable the integration of information across and within spatial scales; develop new and advanced models that support the assessment of longitudinal and lateral hydrological connectivity; and provide an accessible modeling environment for researchers, decision makers, and practitioners. As a contribution, we here present a new modeling framework that integrates hydrographic baseline data at a global scale (enhanced HydroSHEDS layers and coupled datasets) with new modeling tools, specifically a river network routing model (HydroROUT) that is currently under development. The resulting ‘hydro-spatial fabric’ is designed to provide an avenue for advanced hydro-ecological applications at large scales in a consistent and highly versatile way. Preliminary results from case studies to assess human impacts on water quality and the effects of dams on river fragmentation and downstream flow regulation illustrate the potential of this combined data-and-modeling framework to conduct novel research in the fields of aquatic ecology, biogeochemistry, geo-statistical modeling, or pollution and health risk assessments. The global scale outcomes are at a previously unachieved spatial resolution of 500 m and can thus support local planning and decision making in many of the world's large river basins. Copyright © 2013 John Wiley & Sons, Ltd.

read more

Citations
More filters

Riverine flood risk screening with a simple network-based approach: A proof of concept in the Ganghes-Brahmaputra basin

TL;DR: In this article, the authors proposed a flood risk screening model based on complex network theory to efficiently study the cascading effects of floods in riverine systems, which can be used as a starting point for policy screening and scenario analysis.
Journal ArticleDOI

Thirteen novel ideas and underutilised resources to support progress towards a range‐wide American eel stock assessment

TL;DR: In this article , a robust assessment of the American eel (Anguilla rostrata) stock, required to guide conservation efforts, is challenged by the species' vast range, high variability in demographic parameters and data inadequacies.
Journal ArticleDOI

TATOO - Python Topographic Analysis Tool Library for semi-automated setup of high-resolution integrated hydrologic models

TL;DR: The TATOO as mentioned in this paper library integrates different models' preprocessing into one processing environment and combines not model-specific topographic preprocessing functions with model specific parameter calculation functions, which can be used for both subcatchment and raster model architectures.
Journal ArticleDOI

Cooperative adaptive management of the Nile River with climate and socio-economic uncertainties

TL;DR: In this article , a planning framework for adaptive management of the Nile infrastructure system, combining climate projections; hydrological, river system and economy-wide simulators; and artificial intelligence multi-objective design and machine learning algorithms, is presented.
References
More filters
Journal ArticleDOI

The River Continuum Concept

TL;DR: It is hypothesized that producer and consumer communities characteristic of a given river reach become established in harmony with the dynamic physical conditions of the channel.
Book

Network Flows: Theory, Algorithms, and Applications

TL;DR: In-depth, self-contained treatments of shortest path, maximum flow, and minimum cost flow problems, including descriptions of polynomial-time algorithms for these core models are presented.
Journal ArticleDOI

Global Water Resources: Vulnerability from Climate Change and Population Growth

TL;DR: Numerical experiments combining climate model outputs, water budgets, and socioeconomic information along digitized river networks demonstrate that (i) a large proportion of the world's population is currently experiencing water stress and (ii) rising water demands greatly outweigh greenhouse warming in defining the state of global water systems to 2025.
Journal ArticleDOI

Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity.

TL;DR: This literature review has focused this literature review around four key principles to highlight the important mechanisms that link hydrology and aquatic biodiversity and to illustrate the consequent impacts of altered flow regimes.
Related Papers (5)