scispace - formally typeset
Open AccessJournal ArticleDOI

Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration

Reads0
Chats0
TLDR
This paper presents the first globally optimal algorithm, named Go-ICP, for Euclidean (rigid) registration of two 3D point-sets under the inline-formula notation, and derives novel upper and lower bounds for the registration error function.
Abstract
The Iterative Closest Point (ICP) algorithm is one of the most widely used methods for point-set registration. However, being based on local iterative optimization, ICP is known to be susceptible to local minima. Its performance critically relies on the quality of the initialization and only local optimality is guaranteed. This paper presents the first globally optimal algorithm, named Go-ICP, for Euclidean (rigid) registration of two 3D point-sets under the $L_2$ error metric defined in ICP. The Go-ICP method is based on a branch-and-bound scheme that searches the entire 3D motion space $SE(3)$ . By exploiting the special structure of $SE(3)$ geometry, we derive novel upper and lower bounds for the registration error function. Local ICP is integrated into the BnB scheme, which speeds up the new method while guaranteeing global optimality. We also discuss extensions, addressing the issue of outlier robustness. The evaluation demonstrates that the proposed method is able to produce reliable registration results regardless of the initialization. Go-ICP can be applied in scenarios where an optimal solution is desirable or where a good initialization is not always available.

read more

Citations
More filters
Book ChapterDOI

Fast Global Registration

TL;DR: An algorithm for fast global registration of partially overlapping 3D surfaces that provides the accuracy achieved by well-initialized local refinement algorithms, without requiring an initialization and at lower computational cost.
Journal ArticleDOI

Image Matching from Handcrafted to Deep Features: A Survey

TL;DR: This survey introduces feature detection, description, and matching techniques from handcrafted methods to trainable ones and provides an analysis of the development of these methods in theory and practice, and briefly introduces several typical image matching-based applications.
Proceedings ArticleDOI

Deep Closest Point: Learning Representations for Point Cloud Registration

TL;DR: This work proposes a learning-based method, titled Deep Closest Point (DCP), inspired by recent techniques in computer vision and natural language processing, that provides a state-of-the-art registration technique and evaluates the suitability of the learned features transferred to unseen objects.
Journal ArticleDOI

TEASER: Fast and Certifiable Point Cloud Registration

TL;DR: TEASER++ as mentioned in this paper uses a truncated least squares (TLS) cost that makes the estimation insensitive to a large fraction of spurious correspondences and provides a general graph-theoretic framework to decouple scale, rotation and translation estimation, which allows solving in cascade for the three transformations.
Posted Content

Deep Closest Point: Learning Representations for Point Cloud Registration

TL;DR: Deep Closest Point (DCP) as discussed by the authors is a learning-based method for point cloud registration, which consists of three parts: a point cloud embedding network, an attention-based module combined with a pointer generation layer to approximate combinatorial matching, and a differentiable singular value decomposition (SVD) layer to extract the final rigid transformation.
References
More filters
Book

Convex Optimization

TL;DR: In this article, the focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them, and a comprehensive introduction to the subject is given. But the focus of this book is not on the optimization problem itself, but on the problem of finding the appropriate technique to solve it.
Journal ArticleDOI

Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography

TL;DR: New results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form that provide the basis for an automatic system that can solve the Location Determination Problem under difficult viewing.
Journal ArticleDOI

A method for registration of 3-D shapes

TL;DR: In this paper, the authors describe a general-purpose representation-independent method for the accurate and computationally efficient registration of 3D shapes including free-form curves and surfaces, based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point.

Multiple View Geometry in Computer Vision.

TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Journal ArticleDOI

Shape matching and object recognition using shape contexts

TL;DR: This paper presents work on computing shape models that are computationally fast and invariant basic transformations like translation, scaling and rotation, and proposes shape detection using a feature called shape context, which is descriptive of the shape of the object.
Related Papers (5)