scispace - formally typeset
Open AccessJournal ArticleDOI

Graph based anomaly detection and description: a survey

TLDR
This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods for anomaly detection in data represented as graphs, and gives a general framework for the algorithms categorized under various settings.
Abstract
Detecting anomalies in data is a vital task, with numerous high-impact applications in areas such as security, finance, health care, and law enforcement. While numerous techniques have been developed in past years for spotting outliers and anomalies in unstructured collections of multi-dimensional points, with graph data becoming ubiquitous, techniques for structured graph data have been of focus recently. As objects in graphs have long-range correlations, a suite of novel technology has been developed for anomaly detection in graph data. This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods for anomaly detection in data represented as graphs. As a key contribution, we give a general framework for the algorithms categorized under various settings: unsupervised versus (semi-)supervised approaches, for static versus dynamic graphs, for attributed versus plain graphs. We highlight the effectiveness, scalability, generality, and robustness aspects of the methods. What is more, we stress the importance of anomaly attribution and highlight the major techniques that facilitate digging out the root cause, or the `why', of the detected anomalies for further analysis and sense-making. Finally, we present several real-world applications of graph-based anomaly detection in diverse domains, including financial, auction, computer traffic, and social networks. We conclude our survey with a discussion on open theoretical and practical challenges in the field.

read more

Citations
More filters
Journal ArticleDOI

Knowledge graph refinement: A survey of approaches and evaluation methods

TL;DR: A survey of such knowledge graph refinement approaches, with a dual look at both the methods being proposed as well as the evaluation methodologies used.
Journal ArticleDOI

f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks.

TL;DR: Fast AnoGAN (f‐AnoGAN), a generative adversarial network (GAN) based unsupervised learning approach capable of identifying anomalous images and image segments, that can serve as imaging biomarker candidates is presented.
Journal ArticleDOI

A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data.

TL;DR: This paper aims to be a new well-funded basis for unsupervised anomaly detection research by publishing the source code and the datasets, and reveals the strengths and weaknesses of the different approaches for the first time.
Journal ArticleDOI

Graph convolutional networks: a comprehensive review

TL;DR: A comprehensive review specifically on the emerging field of graph convolutional networks, which is one of the most prominent graph deep learning models, is conducted and several open challenges are presented and potential directions for future research are discussed.
Journal ArticleDOI

Deep Learning for Anomaly Detection: A Review

TL;DR: A comprehensive survey of deep anomaly detection with a comprehensive taxonomy is presented in this paper, covering advancements in 3 high-level categories and 11 fine-grained categories of the methods.
References
More filters

Collective classification with relational dependency networks

TL;DR: This paper presents relational dependency networks (RDNs), a collective classification model that offers simple parameter estimation and efficient structure learning and shows that collective classification improves performance.
Proceedings ArticleDOI

BIG-ALIGN: Fast Bipartite Graph Alignment

TL;DR: This work focuses on aligning bipartite graphs, a problem which has been largely ignored by the extensive existing work on graph matching, despite the ubiquity of those graphs, and introduces a new optimization formulation and proposes an effective and fast algorithm to solve it.
Proceedings ArticleDOI

PICS: Parameter-free identification of cohesive subgroups in large attributed graphs

TL;DR: This work proposes PICS, a novel, parameter-free method for mining attributed graphs that requires no user-specified parameters such as the number of clusters and similarity functions, and its running time scales linearly with total graph and attribute size.
Proceedings ArticleDOI

Converting Output Scores from Outlier Detection Algorithms into Probability Estimates

TL;DR: This paper presents two methods for transforming outlier scores into probabilities that models the score distributions as a mixture of exponential and Gaussian probability functions and calculates the posterior probabilites via the Bayes' rule.
Proceedings ArticleDOI

Less is More: Compact Matrix Decomposition for Large Sparse Graphs.

TL;DR: In this article, the Compact Matrix Decomposition (CMD) is proposed to compute sparse low-rank approximations for detecting worm-like hierarchical scanning patterns in real network data.