scispace - formally typeset
Journal ArticleDOI

Graph neural network for groundwater level forecasting

Tao Bai, +1 more
- 01 Jan 2023 - 
- Vol. 616, pp 128792-128792
Reads0
Chats0
TLDR
In this article , a graph neural network (GNN) is used to forecast groundwater dynamics where it can represent each well as a node in the graph and extract the spatial information is extracted from an interconnected network using graph convolution layers with a self-adaptive adjacency matrix.
Abstract
Accurate prediction of groundwater level (GWL) over a period of time is of great importance for groundwater resources management. Machine learning techniques due to their great performance have recently been used for this problem. Previous methods, however, did not consider the spatial relationships between wells due to the difficulty to handle unstructured well location data. In this paper, a graph neural network (GNN) is used to forecast groundwater dynamics where it can represent each well as a node in the graph. The spatial information is, thus, extracted from an interconnected network using graph convolution layers with a self-adaptive adjacency matrix. The temporal features of the sequence are obtained by gated temporal convolutional networks. The model was applied and evaluated for wells in the southwest area of British Colombia in Canada using data about 11 years (2010–2020). The proposed model performs better in terms of all the defined evaluation metrics, when compared with two baseline models: long short-term memory (LSTM) and gated recurrent units (GRU). Moreover, when the spatial dependencies are completely unknown, the model can still learn them from the data and obtain comparable performance. Furthermore, the proposed model has a high efficiency since it can simultaneously model GWL change for all monitoring wells in the system. We also demonstrated that the spatial dependencies between each well could be intuitively interpreted from the learned adjacency matrix.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Streamflow prediction using machine learning models in selected rivers of Southern India

TL;DR: In this article , the authors have tested four machine learning models (ML models): Support Vector Machines (SVM), Random Forest (RF), Long Short-Term Memory (LSTM), and Multivariate Adaptive Regression Splines (MARS) for streamflow prediction at daily and monthly time scales in three rivers draining in different climatic and geological settings.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Journal ArticleDOI

The Graph Neural Network Model

TL;DR: A new neural network model, called graph neural network (GNN) model, that extends existing neural network methods for processing the data represented in graph domains, and implements a function tau(G,n) isin IRm that maps a graph G and one of its nodes n into an m-dimensional Euclidean space.
Journal ArticleDOI

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

TL;DR: In this article, the authors introduce physics-informed neural networks, which are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear partial differential equations.
Journal ArticleDOI

The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains

TL;DR: The field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process high-dimensional data on graphs as discussed by the authors, which are the analogs to the classical frequency domain and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs.
Related Papers (5)