Handwritten Numeral Databases of Indian Scripts and Multistage Recognition of Mixed Numerals
01 Mar 2009-IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE Computer Society)-Vol. 31, Iss: 3, pp 444-457
...read more
Citations
More filters
[...]
TL;DR: An extremely fast leaning algorithm called ELM for single hidden layer feed forward networks (SLFN), which randomly chooses the input weights and analytically determines the output weights of SLFN, which learns much faster than traditional popular learning algorithms for feed forward neural networks.
Abstract: This paper deals with the recognition of handwritten Malayalam character using wavelet energy feature (WEF) and extreme learning machine (ELM). The wavelet energy (WE) is a new and robust parameter, and is derived using wavelet transform. It can reduce the influences of different types of noise at different levels. WEF can reflect the WE distribution of characters in several directions at different scales. To a non oscillating pattern, the amplitudes of wavelet coefficients increase when the scale of wavelet decomposition increase. WE of different decomposition levels have different powers to discriminate the character images. These features constitute patterns of handwritten characters for classification. The traditional learning algorithms of the different classifiers are far slower than required. So we have used an extremely fast leaning algorithm called ELM for single hidden layer feed forward networks (SLFN), which randomly chooses the input weights and analytically determines the output weights of SLFN. This algorithm learns much faster than traditional popular learning algorithms for feed forward neural networks. This feature vector, classifier combination gave good recognition accuracy at level 6 of the wavelet decomposition.
164 citations
Cites background or methods from "Handwritten Numeral Databases of In..."
[...]
[...]
[...]
[...]
TL;DR: In this paper, the state of the art from 1970s of machine printed and handwritten Devanagari optical character recognition (OCR) is discussed in various sections of the paper.
Abstract: In India, more than 300 million people use Devanagari script for documentation. There has been a significant improvement in the research related to the recognition of printed as well as handwritten Devanagari text in the past few years. State of the art from 1970s of machine printed and handwritten Devanagari optical character recognition (OCR) is discussed in this paper. All feature-extraction techniques as well as training, classification and matching techniques useful for the recognition are discussed in various sections of the paper. An attempt is made to address the most important results reported so far and it is also tried to highlight the beneficial directions of the research till date. Moreover, the paper also contains a comprehensive bibliography of many selected papers appeared in reputed journals and conference proceedings as an aid for the researchers working in the field of Devanagari OCR.
138 citations
Cites background or methods from "Handwritten Numeral Databases of In..."
[...]
[...]
[...]
[...]
[...]
[...]
TL;DR: An off-line handwritten alphabetical character recognition system using multilayer feed forward neural network that will be suitable for converting handwritten documents into structural text form and recognizing handwritten names is described in the paper.
Abstract: An off-line handwritten alphabetical character recognition system using multilayer feed forward neural network is described in the paper. A new method, called, diagonal based feature extraction is introduced for extracting the features of the handwritten alphabets. Fifty data sets, each containing 26 alphabets written by various people, are used for training the neural network and 570 different handwritten alphabetical characters are used for testing. The proposed recognition system performs quite well yielding higher levels of recognition accuracy compared to the systems employing the conventional horizontal and vertical methods of feature extraction. This system will be suitable for converting handwritten documents into structural text form and recognizing handwritten names.
129 citations
Cites methods from "Handwritten Numeral Databases of In..."
[...]
[...]
TL;DR: This paper has described the preparation of a benchmark database for research on off-line Optical Character Recognition (OCR) of document images of handwritten Bangla text and Bangle text mixed with English words, which is the first handwritten database in this area available as an open source document.
Abstract: In this paper, we have described the preparation of a benchmark database for research on off-line Optical Character Recognition (OCR) of document images of handwritten Bangla text and Bangla text mixed with English words. This is the first handwritten database in this area, as mentioned above, available as an open source document. As India is a multi-lingual country and has a colonial past, so multi-script document pages are very much common. The database contains 150 handwritten document pages, among which 100 pages are written purely in Bangla script and rests of the 50 pages are written in Bangla text mixed with English words. This database for off-line-handwritten scripts is collected from different data sources. After collecting the document pages, all the documents have been preprocessed and distributed into two groups, i.e., CMATERdb1.1.1, containing document pages written in Bangla script only, and CMATERdb1.2.1, containing document pages written in Bangla text mixed with English words. Finally, we have also provided the useful ground truth images for the line segmentation purpose. To generate the ground truth images, we have first labeled each line in a document page automatically by applying one of our previously developed line extraction techniques [Khandelwal et al., PReMI 2009, pp. 369–374] and then corrected any possible error by using our developed tool GT Gen 1.1. Line extraction accuracies of 90.6 and 92.38% are achieved on the two databases, respectively, using our algorithm. Both the databases along with the ground truth annotations and the ground truth generating tool are available freely at http://code.google.com/p/cmaterdb.
106 citations
[...]
TL;DR: A new combination of PCA/MPCA and QTLR features for OCR of handwritten numerals is introduced and it has been observed that MPCA+QTLR feature combination outperforms PCA+QTB feature combination and most other conventional features available in the literature.
Abstract: Principal Component Analysis (PCA) and Modular PCA (MPCA) are well known statistical methods for recognition of facial images. But only PCA/MPCA is found to be insufficient to achieve high classification accuracy required for handwritten character recognition application. This is due to the shortcomings of those methods to represent certain local morphometric information present in the character patterns. On the other hand Quad-tree based hierarchically derived Longest-Run (QTLR) features, a type of popularly used topological features for character recognition, miss some global statistical information of the characters. In this paper, we have introduced a new combination of PCA/MPCA and QTLR features for OCR of handwritten numerals. The performance of the designed feature-combination is evaluated on handwritten numerals of five popular scripts of Indian sub-continent, viz., Arabic, Bangla, Devanagari, Latin and Telugu with Support Vector Machine (SVM) based classifier. From the results it has been observed that MPCA+QTLR feature combination outperforms PCA+QTLR feature combination and most other conventional features available in the literature.
104 citations
References
More filters
[...]
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.
34,930 citations
[...]
31,977 citations
Book•
[...]
16 Jul 1998
TL;DR: Thorough, well-organized, and completely up to date, this book examines all the important aspects of this emerging technology, including the learning process, back-propagation learning, radial-basis function networks, self-organizing systems, modular networks, temporal processing and neurodynamics, and VLSI implementation of neural networks.
Abstract: From the Publisher:
This book represents the most comprehensive treatment available of neural networks from an engineering perspective. Thorough, well-organized, and completely up to date, it examines all the important aspects of this emerging technology, including the learning process, back-propagation learning, radial-basis function networks, self-organizing systems, modular networks, temporal processing and neurodynamics, and VLSI implementation of neural networks. Written in a concise and fluid manner, by a foremost engineering textbook author, to make the material more accessible, this book is ideal for professional engineers and graduate students entering this exciting field. Computer experiments, problems, worked examples, a bibliography, photographs, and illustrations reinforce key concepts.
29,115 citations
[...]
TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Abstract: Multiresolution representations are effective for analyzing the information content of images. The properties of the operator which approximates a signal at a given resolution were studied. It is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2/sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions. In L/sup 2/(R), a wavelet orthonormal basis is a family of functions which is built by dilating and translating a unique function psi (x). This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror filters. Wavelet representation lies between the spatial and Fourier domains. For images, the wavelet representation differentiates several spatial orientations. The application of this representation to data compression in image coding, texture discrimination and fractal analysis is discussed. >
19,033 citations
[...]
01 Jan 1988
TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Abstract: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion
16,807 citations
Additional excerpts
[...]
Related Papers (5)
[...]
[...]