scispace - formally typeset
Journal ArticleDOI

Harvesting Water Drop Energy by a Sequential Contact-Electrification and Electrostatic-Induction Process

TLDR
A new prototype triboelectric nanogenerator with superhydrophobic and self-cleaning features is invented to harvest water drop energy based on a sequential contact electrification and electrostatic induction process.
Abstract
A new prototype triboelectric nanogenerator with superhydrophobic and self-cleaning features is invented to harvest water drop energy based on a sequential contact electrification and electrostatic induction process. Because of the easy-fabrication, cost-effectiveness, and robust properties, the developed triboelectric nanogenerator expands the potential applications to harvesting energy from household wastewater and raindrops.

read more

Citations
More filters
Journal ArticleDOI

Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors

TL;DR: A comprehensive review of the four modes, their theoretical modelling, and the applications of TENGs for harvesting energy from human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water and more as well as self-powered sensors is provided in this article.
Journal ArticleDOI

Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives

TL;DR: The TENG can be a sensor that directly converts a mechanical triggering into a self-generated electric signal for detection of motion, vibration, mechanical stimuli, physical touching, and biological movement and is a new paradigm for energy harvesting.
Journal ArticleDOI

Toward the blue energy dream by triboelectric nanogenerator networks

TL;DR: In this article, water wave energy is one of the most promising renewable energy sources, while little has been exploited due to various limitations of current technologies mainly relying on electromagnetic generator (EMG), especially its operation in irregular environment and low frequency (
Journal ArticleDOI

A droplet-based electricity generator with high instantaneous power density

TL;DR: It is shown that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects.
Journal ArticleDOI

A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics.

TL;DR: A novel integrated power unit realizes both energy harvesting and energy storage by a textile triboelectric nanogenerator (TENG)-cloth and a flexible lithium-ion battery (LIB) belt, respectively.
References
More filters
Journal ArticleDOI

Complex thermoelectric materials.

TL;DR: A new era of complex thermoelectric materials is approaching because of modern synthesis and characterization techniques, particularly for nanoscale materials, and the strategies used to improve the thermopower and reduce the thermal conductivity are reviewed.
Journal ArticleDOI

Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays

TL;DR: This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
Journal ArticleDOI

Flexible triboelectric generator

TL;DR: In this article, the authors demonstrate a simple, low cost and effective approach of using the charging process in friction to convert mechanical energy into electric power for driving small electronics, which is fabricated by stacking two polymer sheets made of materials having distinctly different triboelectric characteristics, with metal films deposited on the top and bottom of the assembled structure.
Journal ArticleDOI

A piezoelectric vibration based generator for wireless electronics

TL;DR: In this paper, a vibration-based piezoelectric generator has been developed as an enabling technology for wireless sensor networks, where the authors discuss the modeling, design, and optimization of the generator based on a two-layer bending element.
Journal ArticleDOI

Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator.

TL;DR: This work demonstrated the practicability of using NG to harvest large-scale mechanical energy, such as footsteps, rolling wheels, wind power, and ocean waves, by constructing a triboelectric nanogenerator with ultrahigh electric output.
Related Papers (5)