scispace - formally typeset
Search or ask a question

Showing papers in "Advanced Materials in 2014"


Journal ArticleDOI
TL;DR: In this article, a new family of two-dimensional early transition metal carbides and carbonitrides, called MXenes, was discovered and a detailed outlook for future research on MXenes is also presented.
Abstract: Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by strong metallic, ionic, and covalent bonds, such as Ti2AlC, Ti3AlC2, and Ta4AlC3. MXenes ­combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. In essence, they behave as “conductive clays”. This article reviews progress—both ­experimental and theoretical—on their synthesis, structure, properties, intercalation, delamination, and potential applications. MXenes are expected to be good candidates for a host of applications. They have already shown promising performance in electrochemical energy storage systems. A detailed outlook for future research on MXenes is also presented.

3,973 citations


Journal ArticleDOI
TL;DR: Organolead trihalide perovskites are shown to exhibit the best of both worlds: charge-carrier mobilities around 10 cm2 V−1 s−1 and low bi-molecular charge-recombination constants.
Abstract: Organolead trihalide perovskites are shown to exhibit the best of both worlds: charge-carrier mobilities around 10 cm2 V−1 s−1 and low bi-molecular charge-recombination constants. The ratio of the two is found to defy the Langevin limit of kinetic charge capture by over four orders of magnitude. This mechanism causes long (micrometer) charge-pair diffusion lengths crucial for flat-heterojunction photovoltaics.

2,712 citations


Journal ArticleDOI
TL;DR: “United the authors stand, United they fall”–Aesop.
Abstract: "United we stand, divided we fall."--Aesop. Aggregation-induced emission (AIE) refers to a photophysical phenomenon shown by a group of luminogenic materials that are non-emissive when they are dissolved in good solvents as molecules but become highly luminescent when they are clustered in poor solvents or solid state as aggregates. In this Review we summarize the recent progresses made in the area of AIE research. We conduct mechanistic analyses of the AIE processes, unify the restriction of intramolecular motions (RIM) as the main cause for the AIE effects, and derive RIM-based molecular engineering strategies for the design of new AIE luminogens (AIEgens). Typical examples of the newly developed AIEgens and their high-tech applications as optoelectronic materials, chemical sensors and biomedical probes are presented and discussed.

2,322 citations


Journal ArticleDOI
TL;DR: This review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes, and summarizes the key aspects of various carbon materials synthesized for use in supercapacitors.
Abstract: Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.

2,140 citations


Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art in organic field effect transistors (OFETs) are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays.
Abstract: Over the past 25 years, organic field-effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3–4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field-effect transistors with performance that clearly exceeds that of benchmark amorphous silicon-based devices. In this article, state-of-the-art in OFETs are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field-effect mobilities exceeding > 1 cm2 V–1 s–1 have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future.

1,992 citations


Journal ArticleDOI
TL;DR: This review gives a concise overview of the all-solid-state Z-scheme photocatalytic systems, including their composition, construction, optimization and applications, which have a huge potential to solve the current energy and environmental crises facing the modern industrial development.
Abstract: The current rapid industrial development causes the serious energy and environmental crises. Photocatalyts provide a potential strategy to solve these problems because these materials not only can directly convert solar energy into usable or storable energy resources but also can decompose organic pollutants under solar-light irradiation. However, the aforementioned applications require photocatalysts with a wide absorption range, long-term stability, high charge-separation efficiency and strong redox ability. Unfortunately, it is often difficult for a single-component photocatalyst to simultaneously fulfill all these requirements. The artificial heterogeneous Z-scheme photocatalytic systems, mimicking the natural photosynthesis process, overcome the drawbacks of single-component photocatalysts and satisfy those aforementioned requirements. Such multi-task systems have been extensively investigated in the past decade. Especially, the all-solid-state Z-scheme photocatalytic systems without redox pair have been widely used in the water splitting, solar cells, degradation of pollutants and CO2 conversion, which have a huge potential to solve the current energy and environmental crises facing the modern industrial development. Thus, this review gives a concise overview of the all-solid-state Z-scheme photocatalytic systems, including their composition, construction, optimization and applications.

1,949 citations


Journal ArticleDOI
TL;DR: A new bioprinting method is reported for fabricating 3D tissue constructs replete with vasculature, multiple types of cells, and extracellular matrix that open new -avenues for drug screening and fundamental studies of wound healing, angiogenesis, and stem-cell niches.
Abstract: A new bioprinting method is reported for fabricating 3D tissue constructs replete with vasculature, multiple types of cells, and extracellular matrix. These intricate, heterogeneous structures are created by precisely co-printing multiple materials, known as bioinks, in three dimensions. These 3D micro-engineered environments open new -avenues for drug screening and fundamental studies of wound healing, angiogenesis, and stem-cell niches.

1,699 citations


Journal ArticleDOI
Wei Zeng1, Lin Shu1, Qiao Li1, Song Chen1, Fei Wang1, Xiaoming Tao1 
TL;DR: This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products.
Abstract: Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption

1,626 citations


Journal ArticleDOI
TL;DR: Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4.
Abstract: Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries.

1,615 citations


Journal ArticleDOI
TL;DR: Solvent-annealing is found to be an effective method to increase the grain size and carrier diffusion lengths of trihalide perovskite materials.
Abstract: Solvent-annealing is found to be an effective method to increase the grain size and carrier diffusion lengths of trihalide perovskite materials. The carrier diffusion length of MAPbI3 is increased to over 1 μm. The efficiency remains above 14.5% when the MAPbI3 thickness changes from 250 nm to 1 μm, with the highest efficiency reaching 15.6%.

1,521 citations


Journal ArticleDOI
TL;DR: The status of understanding of the operation of bulk heterojunction (BHJ) solar cells is reviewed and a summary of the problems to be solved to achieve the predicted power conversion efficiencies of >20% for a single cell is concluded.
Abstract: The status of understanding of the operation of bulk heterojunction (BHJ) solar cells is reviewed. Because the carrier photoexcitation recombination lengths are typically 10 nm in these disordered materials, the length scale for self-assembly must be of order 10–20 nm. Experiments have verified the existence of the BHJ nanostructure, but the morphology remains complex and a limiting factor. Three steps are required for generation of electrical power: i) absorption of photons from the sun; ii) photoinduced charge separation and the generation of mobile carriers; iii) collection of electrons and holes at opposite electrodes. The ultrafast charge transfer process arises from fundamental quantum uncertainty; mobile carriers are directly generated (electrons in the acceptor domains and holes in the donor domains) by the ultrafast charge transfer (≈70%) with ≈30% generated by exciton diffusion to a charge separating heterojunction. Sweep-out of the mobile carriers by the internal field prior to recombination is essential for high performance. Bimolecular recombination dominates in materials where the donor and acceptor phases are pure. Impurities degrade performance by introducing Shockly–Read–Hall decay. The review concludes with a summary of the problems to be solved to achieve the predicted power conversion efficiencies of >20% for a single cell.

Journal ArticleDOI
TL;DR: An overview of the quick development in TADF mechanisms, materials, and applications is presented, with a particular emphasis on their different types of metal-organic complexes, D-A molecules, and fullerenes.
Abstract: The design and characterization of thermally activated delayed fluorescence (TADF) materials for optoelectronic applications represents an active area of recent research in organoelectronics. Noble metal-free TADF molecules offer unique optical and electronic properties arising from the efficient transition and interconversion between the lowest singlet (S1) and triplet (T1) excited states. Their ability to harvest triplet excitons for fluorescence through facilitated reverse intersystem crossing (T1→S1) could directly impact their properties and performances, which is attractive for a wide variety of low-cost optoelectronic devices. TADF-based organic light-emitting diodes, oxygen, and temperature sensors show significantly upgraded device performances that are comparable to the ones of traditional rare-metal complexes. Here we present an overview of the quick development in TADF mechanisms, materials, and applications. Fundamental principles on design strategies of TADF materials and the common relationship between the molecular structures and optoelectronic properties for diverse research topics and a survey of recent progress in the development of TADF materials, with a particular emphasis on their different types of metal-organic complexes, D-A molecules, and fullerenes, are highlighted. The success in the breakthrough of the theoretical and technical challenges that arise in developing high-performance TADF materials may pave the way to shape the future of organoelectronics.

Journal ArticleDOI
TL;DR: This work presents a probabilistic analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a mixture of Na2CO3 and Na2SO4 which has shown promise as a raw material for high-performance liquid chromatography.
Abstract: P.-W. Liang, C.-Y. Liao, Dr. C.-C. Chueh, Dr. F. Zuo, S. T. Williams, Dr. X.-K. Xin, Prof. A. K.-Y. Jen Department of Materials Science and Engineering University of Washington Seattle , WA 98195 , USA E-mail: ajen@u.washington.edu Prof. A. K.-Y. Jen Department of Chemistry University of Washington Seattle , WA 98195 , USA C.-Y. Liao, Prof. J. J. Lin Institute of Polymer Science and Engineering National Taiwan University Taipei 106 , Taiwan

Journal ArticleDOI
TL;DR: Chemical graphitized r-GOs, as the thinnest and lightest material in the carbon family, exhibit high-efficiency electromagnetic interference shielding at elevated temperature, attributed to the cooperation of dipole polarization and hopping conductivity.
Abstract: Chemical graphitized r-GOs, as the thinnest and lightest material in the carbon family, exhibit high-efficiency electromagnetic interference (EMI) shielding at elevated temperature, attributed to the cooperation of dipole polarization and hopping conductivity. The r-GO composites show different temperature-dependent imaginary permittivities and EMI shielding performances with changing mass ratio.

Journal ArticleDOI
TL;DR: A new method, embedded-3D printing (e-3DP), is reported for fabricating strain sensors within highly conformal and extensible elastomeric matrices.
Abstract: A new method, embedded-3D printing (e-3DP), is reported for fabricating strain sensors within highly conformal and extensible elastomeric matrices. e-3DP allows soft sensors to be created in nearly arbitrary planar and 3D motifs in a highly programmable and seamless manner. Several embodiments are demonstrated and sensor performance is characterized.

Journal ArticleDOI
TL;DR: A new epoxy-based ink is reported, which enables 3D printing of lightweight cellular composites with controlled alignment of multiscale, high-aspectratio fiber reinforcement to create hierarchical structures inspired by balsa wood.
Abstract: A new epoxy-based ink is reported, which enables 3D printing of lightweight cellular composites with controlled alignment of multiscale, high-aspectratio fiber reinforcement to create hierarchical structures inspired by balsa wood. Young's modulus values up to 10 times higher than existing commercially available 3D-printed polymers are attainable, while comparable strength values are maintained.

Journal ArticleDOI
TL;DR: The present review provides an overview and highlights recent state-of-the-art accomplishments of overcoming the drawback of low photoconversion efficiency and selectivity through the design of highly active photocatalysts from the point of adsorption of reactants, charge separation and transport, light harvesting, and CO2 activation.
Abstract: Photocatalytic reduction of CO2 into hydrocarbon fuels, an artificial photosynthesis, is based on the simulation of natural photosynthesis in green plants, whereby O2 and carbohydrates are produced from H2 O and CO2 using sunlight as an energy source. It couples the reductive half-reaction of CO2 fixation with a matched oxidative half-reaction such as water oxidation, to achieve a carbon neutral cycle, which is like killing two birds with one stone in terms of saving the environment and supplying future energy. The present review provides an overview and highlights recent state-of-the-art accomplishments of overcoming the drawback of low photoconversion efficiency and selectivity through the design of highly active photocatalysts from the point of adsorption of reactants, charge separation and transport, light harvesting, and CO2 activation. It specifically includes: i) band-structure engineering, ii) nanostructuralization, iii) surface oxygen vacancy engineering, iv) macro-/meso-/microporous structuralization, v) exposed facet engineering, vi) co-catalysts, vii) the development of a Z-scheme system. The challenges and prospects for future development of this field are also present.

Journal ArticleDOI
Xuewen Wang1, Yang Gu1, Xiong Zuoping1, Zheng Cui1, Ting Zhang1 
TL;DR: The E-skin sensing device demonstrates superior sensitivity, a very low detectable pressure limit, a fast response time, and a high stability for the detection of superslight pressures, which may broaden their potential use as cost-effective wearable electronics for healthcare applications.
Abstract: Flexible and transparent E-skin devices are achieved by combining silk-molded micro-patterned polydimethylsiloxane (PDMS) with single-walled carbon nanotube (SWNT) ultrathin films. The E-skin sensing device demonstrates superior sensitivity, a very low detectable pressure limit, a fast response time, and a high stability for the detection of superslight pressures, which may broaden their potential use as cost-effective wearable electronics for healthcare applications.

Journal ArticleDOI
TL;DR: This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors, based on carbon materials and a number of composites and flexible micro-supercapacitor.
Abstract: Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices.

Journal ArticleDOI
TL;DR: MoS2 nanosheets functionalized with poly-ethylene glycol are for the first time used as a multifunctional drug delivery system with high drug loading capacities achieving excellent synergistic anti-tumor effect upon systemic administration.
Abstract: MoS2 nanosheets functionalized with poly-ethylene glycol are for the first time used as a multifunctional drug delivery system with high drug loading capacities. Using doxorubicin as the model drug and taking advantages of the strong near-infrared absorbance of MoS2, combined photothermal and chemotherapy of cancer is realized in animal experiments, achieving excellent synergistic anti-tumor effect upon systemic administration.

Journal ArticleDOI
TL;DR: The development of advanced hydrogel with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light‐sensitive, composite, and shape‐memory hydrogels, and a number of potential applications and challenges in the utilization in regenerative medicine are reviewed.
Abstract: Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled physical and biological properties can be used to modulate cellular functionality and tissue morphogenesis. Here, the development of advanced hydrogels with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light-sensitive, composite, and shape-memory hydrogels. Emerging technologies developed over the past decade to control hydrogel architecture are also discussed and a number of potential applications and challenges in the utilization of hydrogels in regenerative medicine are reviewed. It is anticipated that the continued development of sophisticated hydrogels will result in clinical applications that will improve patient care and quality of life.

Journal ArticleDOI
TL;DR: Self-aligned in situ reduced graphene oxide (rGO)/polymer nanocomposites with the engineered structure and properties present high performance electromagnetic interference shielding with a remarkable shilding efficiency of 38 dB.
Abstract: Nanocomposites that contain reinforcements with preferred orientation have attracted significant attention because of their promising applications in a wide range of multifunctional fields. Many efforts have recently been focused on developing facile methods for preparing aligned graphene sheets in solvents and polymers because of their fascinating properties including liquid crystallinity and highly anisotropic characteristics. Self-aligned in situ reduced graphene oxide (rGO)/polymer nanocomposites are prepared using an all aqueous casting method. A remarkably low percolation threshold of 0.12 vol% is achieved in the rGO/epoxy system owing to the uniformly dispersed, monolayer graphene sheets with extremely high aspect ratios (>30000). The self-alignment into a layered structure at above a critical filler content induces a unique anisotropy in electrical and mechanical properties due to the preferential formation of conductive and reinforcing networks along the alignment direction. Accompanied by the anisotropic electrical conductivities are exceptionally high dielectric constants of over 14000 with 3 wt% of rGO at 1 kHz due to the charge accumulation at the highly-aligned conductive filler/insulating polymer interface according to the Maxwell-Wagner-Sillars polarization principle. The highly dielectric rGO/epoxy nanocomposites with the engineered structure and properties present high performance electromagnetic interference shielding with a remarkable shilding efficiency of 38 dB.

Journal ArticleDOI
TL;DR: A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode that contains an array of microscale pyramidal features and the electrode comprises a polymer composite.
Abstract: A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode. The substrate contains an array of microscale pyramidal features, and the electrode comprises a polymer composite. When the pressure-induced geometrical change experienced by the electrode is maximized at 40% elongation, a sensitivity of 10.3 kPa(-1) is achieved.

Journal ArticleDOI
TL;DR: The stretchable graphene nanopaper is demonstrated for efficient human-motion detection applications and is fabricated for strain-sensor applications.
Abstract: Highly stretchable graphene-nanocellulose composite nanopaper is fabricated for strain-sensor applications. Three-dimensional macroporous nanopaper from crumpled graphene and nanocellulose is embedded in elastomer matrix to achieve stretchability up to 100%. The stretchable graphene nanopaper is demonstrated for efficient human-motion detection applications.

Journal ArticleDOI
Guigang Zhang1, Mingwen Zhang1, Xinxin Ye1, Xiaoqing Qiu1, Sen Lin1, Xinchen Wang1 
TL;DR: The as-prepared iodine functionalized g-CN shows enhanced electronic and optical properties, as well as increased photocatalytic activities in an assay of hydrogen evolution.
Abstract: An optimized and general synthetic strategy based on in-situ iodine modifying of polymeric graphitic carbon nitride is discussed. The as-prepared iodine functionalized g-CN shows enhanced electronic and optical properties, as well as increased photocatalytic activities in an assay of hydrogen evolution.

Journal ArticleDOI
TL;DR: A new generation of photothermal theranostic agents based on PEGylated WS2 nanosheets achieves excellent therapeutic efficacy with complete ablation of tumors in a mouse tumor model, and promises further exploration of transition-metal dichalcogenides for biomedical applications, such as cancer imaging and therapy.
Abstract: A new generation of photothermal theranostic agents is developed based on PEGylated WS2 nanosheets. Bimodal in vivo CT/photoacoustic imaging reveals strong tumor contrast after either intratumoral or intravenous injection of WS2 -PEG. In vivo photothermal treatment is then conducted in a mouse tumor model, achieving excellent therapeutic efficacy with complete ablation of tumors. This work promises further exploration of transition-metal dichalcogenides for biomedical applications, such as cancer imaging and therapy.

Journal ArticleDOI
TL;DR: A unique sandwich structure with pure sulfur between two graphene membranes is designed as a very simple but effective approach for the fabrication of Li–S batteries with ultrafast charge/discharge rates and long-life.
Abstract: Lithium-sulfur (Li–S) batteries have high specific capacities and are considered as next-generation batteries for large-scale energy storage and electric vehicles. However, rapid capacity fade and low sulfur utilisation inhibit their use. We designed a unique sandwich structure with pure sulfur between two graphene membranes, which are continuously produced over a large area, as a very simple but effective approach for the fabrication of Li–S batteries with ultrafast charge/discharge rates and long-life. One membrane was used as a graphene current collector (GCC) to replace the conventional aluminium foil current collector, and sulfur was coated onto this membrane as the active material. The other membrane was coated onto a conventional polymer separator (G-separator). This electrode showed a high specific capacity of 1340 mA h g−1 at 300 mA g−1, a Coulombic efficiency approaching 100%, excellent high-rate performance and long cyclic stability. The GCC and G-separator not only effectively reduce the internal resistance of the sulfur cathode but also function as buffer layers to trap/immobilise and reuse the dissolved lithium polysulfides. Furthermore, for the first time, three-dimensional X-ray microtomography was used to investigate sulfur diffusion during electrochemical charge/discharge.

Journal ArticleDOI
TL;DR: Lead free perovskite solar cells based on a CsSnI3 light absorber with a spectral response from 950 nm with high photocurrents are demonstrated.
Abstract: Lead free perovskite solar cells based on a CsSnI3 light absorber with a spectral response from 950 nm is demonstrated. The high photocurrents noted in the system are a consequence of SnF2 addition which reduces defect concentrations and hence the background charge carrier density.

Journal ArticleDOI
TL;DR: In this review, the developments in the field of (plasmonic metal)/semiconductor hybrid nanostructures are comprehensively described and possible future research in this burgeoning field is discussed.
Abstract: Hybrid nanostructures composed of semiconductor and plasmonic metal components are receiving extensive attention. They display extraordinary optical characteristics that are derived from the simultaneous existence and close conjunction of localized surface plasmon resonance and semiconduction, as well as the synergistic interactions between the two components. They have been widely studied for photocatalysis, plasmon-enhanced spectroscopy, biotechnology, and solar cells. In this review, the developments in the field of (plasmonic metal)/semiconductor hybrid nanostructures are comprehensively described. The preparation of the hybrid nanostructures is first presented according to the semiconductor type, as well as the nanostructure morphology. The plasmonic properties and the enabled applications of the hybrid nanostructures are then elucidated. Lastly, possible future research in this burgeoning field is discussed.

Journal ArticleDOI
TL;DR: The fabrication of electronic devices based on organic materials, known as ’printed electronics’, is an emerging technology due to its unprecedented advantages involving fl exibility, light weight, and portability, which will ultimately lead to future ubiquitous applications.
Abstract: The fabrication of electronic devices based on organic materials, known as ’printed electronics’, is an emerging technology due to its unprecedented advantages involving fl exibility, light weight, and portability, which will ultimately lead to future ubiquitous applications. [ 1 ] The solution processability of semiconducting and metallic polymers enables the cost-effective fabrication of optoelectronic devices via high-throughput printing techniques. [ 2 ] These techniques require high-performance fl exible and transparent electrodes (FTEs) fabricated on plastic substrates, but currently, they depend on indium tin oxide (ITO) coated on plastic substrates. However, its intrinsic mechanical brittleness and inferior physical properties arising from lowtemperature ( T ) processing below the melting T of the plastic substrates (i.e., typically below 150 °C) have increased the demand for alternative FTE materials. [ 3 ]