scispace - formally typeset
Open AccessBook

High-Power Converters and AC Drives

Bin Wu
TLDR
In this article, the authors present a model for high-power switchings with SCR rectifiers and demonstrate how to use SCR Rectifiers to control high power switchings.
Abstract
Preface. Part One Introduction. 1. Introduction. 1.1 Introduction. 1.2 Technical Requirements and Challenges. 1.3 Converter Configurations. 1.4 MV Industrial Drives. 1.5 Summary. References. Appendix. 2. High-Power Semiconductor Devices. 2.1 Introduction. 2.2 High-Power Switching Devices. 2.3 Operation of Series-Connected Devices. 2.4 Summary. References. Part Two Multipulse Diode and SCR Rectifiers. 3. Multipulse Diode Rectifiers. 3.1 Introduction. 3.2 Six-Pulse Diode Rectifier. 3.3 Series-Type Multipulse Diode Rectifiers. 3.4 Separate-Type Multipulse Diode Rectifiers. 3.5 Summary.(c) References. 4. Multipulse SCR Rectifiers. 4.1 Introduction. 4.2 Six-Pulse SCR Rectifier. 4.3 12-Pulse SCR Rectifier. 4.4 18- and 24-Pulse SCR Rectifiers. 4.5 Summary. References. 5. Phase-Shifting Transformers. 5.1 Introduction. 5.2 Y/Z Phase-Shifting Transformers. 5.3 /Z Transformers. 5.4 Harmonic Current Cancellation. 5.5 Summary. Part Three Multilevel Voltage Source Converters. 6. Two-Level Voltage Source Inverter. 6.1 Introduction. 6.2 Sinusoidal PWM. 6.3 Space Vector Modulation. 6.4 Summary. References. 7. Cascaded H-Bridge Multilevel Inverters. 7.1 Introduction. 7.2 H-Bridge Inverter. 7.3 Multilevel Inverter Topologies. 7.4 Carrier Based PWM Schemes. 7.5 Staircase Modulation. 7.6 Summary. References. 8. Diode-Clamped Multilevel Inverters. 8.1 Introduction. 8.2 Three-Level Inverter. 8.3 Space Vector Modulation. 8.4 Neutral-Point Voltage Control. 8.5 Other Space Vector Modulation Algorithms. 8.6 High-Level Diode-Clamped Inverters. 8.7 Summary. References. Appendix. 9. Other Multilevel Voltage Source Inverters. 9.1 Introduction. 9.2 NPC/H-Bridge Inverter. 9.3 Multilevel Flying-Capacitor Inverters. 9.4 Summary. References. Part Four PWM Current Source Converters. 10. PWM Current Source Inverters. 10.1 Introduction. 10.2 PWM Current Source Inverter. 10.3 Space Vector Modulation. 10.4 Parallel Current Source Inverters. 10.5 Load-Commutated Inverter (LCI). 10.6 Summary. References. Appendix. 11. PWM Current Source Rectifiers. 11.1 Introduction. 11.2 Single-Bridge Current Source Rectifier. 11.3 Dual-Bridge Current Source Rectifier. 11.4 Power Factor Control . 11.5 Active Damping Control. 11.6 Summary. References. Appendix. Part Five High-Power AC Drives. 12. Voltage Source Inverter-Fed Drives. 12.1 Introduction. 12.2 Two-Level VBSI-Based MV Drives. 12.3 Neutral-Point Clamped (NPC) Inverter-Fed Drives. 12.4 Multilevel Cascaded H-Bridge (CHB) Inverter-Fed Drives. 12.5 NPC/H-Bridge Inverter-Fed Drives. 12.6 Summary. References. 13. Current Source Inverter-Fed Drives. 13.1 Introduction. 13.2 CSI Drives with PWM Rectifiers. 13.3 Transformerless CSI Drive for Standard AC Motors. 13.4 CSI Drive with Multipulse SCR Rectifier. 13.5 LCI Drives for Synchronous Motors. 13.6 Summary. References. 14. Advanced Drive Control Schemes. 14.1 Introduction. 14.2 Reference Frame Transformation. 14.3 Induction Motor Dynamic Models. 14.4 Principle of Field-Oriented Control (FOC). 14.5 Direct Field-Oriented Control. 14.6 Indirect Field-Oriented Control. 14.7 FOC for CSI-Fed Drives. 14.8 Direct Torque Control. 14.9 Summary. References. Abbreviations. Appendix Projects for Graduate-Level Courses. P. 1 Introduction. P. 2 Sample Project. P. 3 Answers to Sample Project. Index. About the Author.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Recent Advances and Industrial Applications of Multilevel Converters

TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Journal ArticleDOI

Multilevel Voltage-Source-Converter Topologies for Industrial Medium-Voltage Drives

TL;DR: This paper covers the high-power voltage-source inverter and the most used multilevel-inverter topologies, including the neutral-point-clamped, cascaded H-bridge, and flying-capacitor converters.
Journal ArticleDOI

The age of multilevel converters arrives

TL;DR: In this paper, the most relevant characteristics of multilevel converters, to motivate possible solutions, and to show that energy companies have to bet on these converters as a good solution compared with classic two-level converters.
Book ChapterDOI

Fundamentals of Power Electronics

TL;DR: This chapter gives a description and overview of power Electronic technologies including a description of the fundamental systems that are the building blocks of power electronic systems.
Journal ArticleDOI

Medium-Voltage Multilevel Converters—State of the Art, Challenges, and Requirements in Industrial Applications

TL;DR: An inverter configuration based on three-level building blocks to generate five-level voltage waveforms is suggested and it is shown that such an inverter may be operated at a very low switching frequency to achieve minimum on-state and dynamic device losses for highly efficient MV drive applications while maintaining low harmonic distortion.
References
More filters
Journal ArticleDOI

Recent developments of high power converters for industry and traction applications

TL;DR: In this article, the state-of-the-art of power semiconductors for high power PWM converters is summarized. And the design and characteristics of a commercially available integrated gate commutated thyristors (IGCT) neutral point clamped PWM voltage source converter for medium voltage drives are discussed.
Journal ArticleDOI

Use of an LC filter to achieve a motor-friendly performance of the PWM voltage source inverter

TL;DR: In this paper, the application of an LC filter to medium voltage motors fed by inverters with switching frequencies below 1000 Hz is described, and rules for the electrical design are discussed as well as solutions for the stability problem.
Journal ArticleDOI

IGCT-a new emerging technology for high power, low cost inverters

TL;DR: The integrated gate commutated thyristor (IGCT) as mentioned in this paper is an important contribution to high power electronics and is the key component for future medium to highvoltage applications from 0.5 MVA up to several 100 MVA.
Journal ArticleDOI

Large static converters for industry and utility applications

TL;DR: The present status of large static converters is described, with focus on their applications to utility and industry, and their future prospects and directions in the 21st century are described, including the personal views and expectations of the author.
Proceedings ArticleDOI

Retrofit of fixed speed induction motors with medium voltage drive converters using NPC three-level inverter high-voltage IGBT based topology

TL;DR: In this article, the authors proposed a medium voltage adjustable speed drive that consists of a twelve-pulse diode rectifier and a three-level neutral point clamped inverter using high voltage IGBTs.
Related Papers (5)