scispace - formally typeset
Open AccessJournal ArticleDOI

How stable is stable? Function versus community composition.

TLDR
Although dominant OTUs were constantly replaced from one sampling point to the next, phylogenetic analysis indicated that inferred physiologic changes in the community were not as dramatic as were genetic changes and indicate that an extremely dynamic community can maintain a stable ecosystem function.
Abstract
The microbial community dynamics of a functionally stable, well-mixed, methanogenic reactor fed with glucose were analyzed over a 605-day period. The reactor maintained constant pH and chemical oxygen demand removal during this period. Thirty-six rrn clones from each of seven sampling events were analyzed by amplified ribosomal DNA restriction analysis (ARDRA) for the Bacteria and Archaea domains and by sequence analysis of dominant members of the community. Operational taxonomic units (OTUs), distinguished as unique ARDRA patterns, showed reproducible distribution for three sample replicates. The highest diversity was observed in the Bacteria domain. The 16S ribosomal DNA Bacteria clone library contained 75 OTUs, with the dominant OTU accounting for 13% of the total clones, but just 21 Archaea OTUs were found, and the most prominent OTU represented 50% of the clones from the respective library. Succession in methanogenic populations was observed, and two periods were distinguished: in the first, Methanobacterium formicicum was dominant, and in the second, Methanosarcina mazei and a Methanobacterium bryantii-related organism were dominant. Higher variability in Bacteria populations was detected, and the temporal OTU distribution suggested a chaotic pattern. Although dominant OTUs were constantly replaced from one sampling point to the next, phylogenetic analysis indicated that inferred physiologic changes in the community were not as dramatic as were genetic changes. Seven of eight dominant OTUs during the first period clustered with the spirochete group, although a cyclic pattern of substitution occurred among members within this order. A more flexible community structure characterized the second period, since a sequential replacement of a Eubacterium-related organism by an unrelated deep-branched organism and finally by a Propionibacterium-like species was observed. Metabolic differences among the dominant fermenters detected suggest that changes in carbon and electron flow occurred during the stable performance and indicate that an extremely dynamic community can maintain a stable ecosystem function.

read more

Citations
More filters
Journal ArticleDOI

Ecological and evolutionary forces shaping microbial diversity in the human intestine.

TL;DR: The human gut is populated with as many as 100 trillion cells, whose collective genome, the microbiome, is a reflection of evolutionary selection pressures acting at the level of the host and at thelevel of the microbial cell.
Journal ArticleDOI

Microbial diversity and soil functions

TL;DR: A better understanding of the relations between microbial diversity and soil functions requires not only the use of more accurate assays for taxonomically and functionally characterizing DNA and RNA extracted from soil, but also high-resolution techniques with which to detect inactive and active microbial cells in the soil matrix.
Journal ArticleDOI

Decoupling function and taxonomy in the global ocean microbiome

TL;DR: It is found that environmental conditions strongly influence the distribution of functional groups in marine microbial communities by shaping metabolic niches, but only weakly influence taxonomic composition within individual functional groups.
Journal ArticleDOI

Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer

TL;DR: Enrichment by repeated transfer of a bacterial consortium harvested from the anode compartment of a biofuel cell in which glucose was used increased the output and selected organisms capable of mediating the electron transfer either by direct bacterial transfer or by excretion of redox components.
Journal ArticleDOI

A Guide to the Natural History of Freshwater Lake Bacteria

TL;DR: A new freshwater lake phylogeny constructed from all published 16S rRNA gene sequences from lake epilimnia is presented and a unifying vocabulary to discuss freshwater taxa is proposed, providing a coherent framework for future studies.
References
More filters
Book

Molecular Cloning: A Laboratory Manual

TL;DR: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years as mentioned in this paper and has been so popular, or so influential, that no other manual has been more widely used and influential.
Book

Bergey's Manual of Systematic Bacteriology

TL;DR: BCL3 and Sheehy cite Bergey's manual of determinative bacteriology of which systematic bacteriology, first edition, is an expansion.
Journal ArticleDOI

16S ribosomal DNA amplification for phylogenetic study.

TL;DR: A set of oligonucleotide primers capable of initiating enzymatic amplification (polymerase chain reaction) on a phylogenetically and taxonomically wide range of bacteria is described in this paper.
Journal ArticleDOI

Phylogenetic identification and in situ detection of individual microbial cells without cultivation.

TL;DR: Phylogenetic analysis of the retrieved rRNA sequence of an uncultured microorganism reveals its closest culturable relatives and may, together with information on the physicochemical conditions of its natural habitat, facilitate more directed cultivation attempts.
Journal ArticleDOI

Archaea in coastal marine environments.

TL;DR: Evidence for the widespread occurrence of unusual archaea in oxygenated coastal surface waters of North America is provided and it is suggested that these microorganisms represent undescribed physiological types of archaea, which reside and compete with aerobic, mesophilic eubacteria in marine coastal environments.
Related Papers (5)