scispace - formally typeset
Open AccessJournal ArticleDOI

Human Antimicrobial Peptides and Proteins

Guangshun Wang
- 13 May 2014 - 
- Vol. 7, Iss: 5, pp 545-594
TLDR
It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin, opening new avenues to the development of anti-infectious drugs.
Abstract
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.

read more

Citations
More filters
Journal ArticleDOI

APD3: the antimicrobial peptide database as a tool for research and education

TL;DR: Newly annotated are AMPs with antibiofilm, antimalarial, anti-protist, insecticidal, spermicidal, chemotactic, wound healing, antioxidant and protease inhibiting properties and various database applications in research and education are summarized.
Journal ArticleDOI

Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans".

TL;DR: The use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this, so the current research on nanoparticles and other nanomaterials are summarized.
Journal ArticleDOI

Mechanisms and consequences of bacterial resistance to antimicrobial peptides

TL;DR: Routine clinical administration of AMPs to treat bacterial infections may select for resistant bacterial pathogens capable of better evading the innate immune system, as well as the ramifications of therapeutic levels of exposure on the development of AMP resistance and bacterial pathogenesis.
Journal ArticleDOI

Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields

TL;DR: This review introduces the progress of research on AMPs comprehensively and systematically, including their classification, mechanism of action, design methods, environmental factors affecting their activity, application status, prospects in various fields and problems to be solved.
Journal ArticleDOI

Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus

TL;DR: A correct and prompt diagnosis of chronic wound infection requires a detailed knowledge of skin bacterial flora, a necessary prerequisite for tailored pharmacological treatment, improving symptoms, and reducing side effects and antibiotic resistance.
References
More filters
Journal ArticleDOI

Antimicrobial peptides of multicellular organisms

TL;DR: As the need for new antibiotics becomes more pressing, could the design of anti-infective drugs based on the design principles these molecules teach us?
Journal ArticleDOI

MOLMOL: a program for display and analysis of macromolecular structures.

TL;DR: Special efforts were made to allow for appropriate display and analysis of the sets of typically 20-40 conformers that are conventionally used to represent the result of an NMR structure determination, using functions for superimposing sets of conformers, calculation of root mean square distance (RMSD) values, identification of hydrogen bonds, and identification and listing of short distances between pairs of hydrogen atoms.
Journal ArticleDOI

Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.

TL;DR: The role of cationic host-defense peptides in modulating the innate immune response and boosting infection-resolving immunity while dampening potentially harmful pro-inflammatory (septic) responses gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections.
Journal ArticleDOI

Mechanisms of Antimicrobial Peptide Action and Resistance

TL;DR: The intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.
Journal ArticleDOI

Hepcidin, a Urinary Antimicrobial Peptide Synthesized in the Liver *

TL;DR: Hepcidin may be a vertebrate counterpart of cysteine-rich antimicrobial peptides produced in the fat body of insects and exhibited antifungal activity against Candida albicans, Aspergillus fumigatus, and As pergillus nigerand antibacterial activity against Escherichia coli.
Related Papers (5)