scispace - formally typeset
Book ChapterDOI

Human Motion Deblurring Using Localized Body Prior

TLDR
This work constructs a localized adversarial framework that solves both human-articulated and camera motion blurs and generates a novel dataset that simulates realistic blurry human motion while maintaining the presence of camera motion.
Abstract
In recent decades, the skinned multi-person linear model (SMPL) is widely exploited in the image-based 3D body reconstruction. This model, however, depends fully on the quality of the input image. Degraded image case, such as the motion-blurred issue, downgrades the quality of the reconstructed 3D body. This issue becomes severe as recent motion deblurring methods mainly focused on solving the camera motion case while ignoring the blur caused by human-articulated motion. In this work, we construct a localized adversarial framework that solves both human-articulated and camera motion blurs. To achieve this, we utilize the result of the restored image in a 3D body reconstruction module and produces a localized map. The map is employed to guide the adversarial modules on learning both the human body and scene regions. Nevertheless, training these modules straight-away is impractical since the recent blurry dataset is not supported by the 3D body predictor module. To settle this issue, we generate a novel dataset that simulates realistic blurry human motion while maintaining the presence of camera motion. By engaging this dataset and the proposed framework, we show that our deblurring results are superior among the state-of-the-art algorithms in both quantitative and qualitative performances.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Human and Scene Motion Deblurring Using Pseudo-Blur Synthesizer

TL;DR: In this article, an on-the-fly blurry data augmenter that can be run during training and test stages is proposed. And the proposed deblurring module is also equipped with hand-crafted prior extracted using the state-of-theart human body statistical model.
Journal ArticleDOI

Human from Blur: Human Pose Tracking from Blurry Images

TL;DR: Zhang et al. as mentioned in this paper proposed a method to estimate 3D human poses from substantially blurred images by backpropagating the pixel-wise reprojection error to recover the best human motion representation that explains a single or multiple input images.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Proceedings ArticleDOI

Image-to-Image Translation with Conditional Adversarial Networks

TL;DR: Conditional adversarial networks are investigated as a general-purpose solution to image-to-image translation problems and it is demonstrated that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Related Papers (5)