scispace - formally typeset
Open AccessJournal ArticleDOI

Hydrogen-bonding in enzyme catalysis. Fourier-transform infrared detection of ground-state electronic strain in acyl-chymotrypsins and analysis of the kinetic consequences

Andrew J. White, +1 more
- 15 Sep 1990 - 
- Vol. 270, Iss: 3, pp 627-637
Reads0
Chats0
TLDR
Measurements of carbonyl absorption frequencies in a number of solvents of the methyl esters of the acyl groups used to make acyl-enzymes have permitted determination of the apparent dielectric constants experienced bycarbonyl groups in the enzyme active centre as well as a discussion of the effects of polarity.
Abstract
I.r. difference spectra are presented for 3-(indol-3-yl)acryloyl-, cinnamoyl-, 3-(5-methylthien-2-yl)acryloyl-, dehydrocinnamoyl- and dihydrocinnamoyl-chymotrypsins at low pH, where the acyl-enzymes are catalytically inactive. At least two absorption bands are seen in each case in the ester carbonyl stretching region of the spectrum. Cinnamoyl-chymotrypsin substituted at the carbonyl carbon atom with 13C was prepared. A difference spectrum in which 13C-substituted acyl-enzyme was subtracted from [12C]acyl-enzyme shows two bands in the ester carbonyl region and thus confirms the assignment of the features to the single ester carbonyl group. The frequencies of the ester carbonyl bands are interpreted in terms of differential hydrogen-bonding. In each case a lower-frequency relatively narrow band is assigned to a productive potentially reactive binding mode in which the carbonyl oxygen atom is inserted in the oxyanion hole of the enzyme active centre. The higher-frequency band, which is broader, is assigned to a non-productive binding mode in each case, where a water molecule bridges from the carbonyl oxygen atom to His-57; this mode is equivalent to the crystallographically determined structure of 3-(indol-3-yl)acryloyl-chymotrypsin, i.e. the Henderson structure. A difference spectrum of dihydrocinnamoyl-chymotrypsin taken at higher pH shows resolution of a feature centred upon 1731 cm-1, which is assigned to a non-bonded conformer in which the carbonyl oxygen atom is not hydrogen-bonded. Perturbation of the protein spectrum in the presence of acyl groups is interpreted in terms of enhanced structural rigidity. It is reported that the ester carbonyl region of the difference spectrum of cinnamoyl-subtilisin is complicated by overlap of features that arise from protein perturbation. Measurements of carbonyl absorption frequencies in a number of solvents of the methyl esters of the acyl groups used to make acyl-enzymes have permitted determination of the apparent dielectric constants experienced by carbonyl groups in the enzyme active centre as well as a discussion of the effects of polarity. The ester carbonyl bond strengths of the various conformations were estimated by using simple harmonic oscillator theory and an empirical relation between the force constants and bond strengths. The fractional bond breaking induced by hydrogen-bonding was used to calculate rate enhancement factors by using absolute reaction rate theory.(ABSTRACT TRUNCATED AT 400 WORDS)

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Infrared spectroscopy of proteins.

TL;DR: This review discusses the application of infrared spectroscopy to the study of proteins by focusing on the mid-infrared spectral region and theStudy of protein reactions by reaction-induced infrared difference spectroscopic.
Journal ArticleDOI

What vibrations tell us about proteins

TL;DR: This review deals with current concepts of vibrational spectroscopy for the investigation of protein structure and function, namely the amide I vibration of the polypeptide backbone that is used for secondary-structure analysis and some of the general aspects also apply to RamanSpectroscopy.
Journal ArticleDOI

Serine protease mechanism and specificity

TL;DR: This article will review recent work on the mechanism and specificity of chymotrypsin-like enzymes, with the occasional references to pertinent experiments with subtilisin.
Journal ArticleDOI

Asymmetric catalysis by chiral hydrogen-bond donors.

TL;DR: This review documents the structural and mechanistic features that contribute to high enantioselectivity in hydrogen-bond-mediated catalytic processes in small-molecule, synthetic catalyst systems.
Journal ArticleDOI

Asymmetrische Katalyse durch chirale Wasserstoffbrückendonoren

TL;DR: Wasserstoffbrucken bestimmen die struktur eines grosen Teils der uns umgebenden Materie as mentioned in this paper, i.e., the ungewohnlichen Eigenschaften von flussigem Wasser, the Faltung von Proteinen zu stabilen dreidimensionalen Strukturen, the DNA-Basenpaarung and the Bindung von Liganden an Rezeptoren beruhen auf dieser nichtkovalenten Wechsel
Related Papers (5)