scispace - formally typeset
Open AccessJournal Article

Hyperband: a novel bandit-based approach to hyperparameter optimization

TLDR
A novel algorithm is introduced, Hyperband, for hyperparameter optimization as a pure-exploration non-stochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations.
Abstract
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration nonstochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Optuna: A Next-generation Hyperparameter Optimization Framework

TL;DR: New design-criteria for next-generation hyperparameter optimization software are introduced, including define-by-run API that allows users to construct the parameter search space dynamically, and easy-to-setup, versatile architecture that can be deployed for various purposes.
Journal ArticleDOI

AutoML: A survey of the state-of-the-art

TL;DR: A comprehensive and up-to-date review of the state-of-the-art (SOTA) in AutoML methods according to the pipeline, covering data preparation, feature engineering, hyperparameter optimization, and neural architecture search (NAS).
Journal ArticleDOI

On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice

TL;DR: This survey paper will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively and introducing several state-of-the-art optimization techniques.
Journal ArticleDOI

Deep learning: new computational modelling techniques for genomics

TL;DR: This Review describes different deep learning techniques and how they can be applied to extract biologically relevant information from large, complex genomic data sets.
Journal ArticleDOI

Text Data Augmentation for Deep Learning.

TL;DR: A survey of data augmentation for text data can be found in this article, where the major motifs of Data Augmentation are summarized into strengthening local decision boundaries, brute force training, causality and counterfactual examples, and the distinction between meaning and form.
References
More filters
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Journal Article

Random search for hyper-parameter optimization

TL;DR: This paper shows empirically and theoretically that randomly chosen trials are more efficient for hyper-parameter optimization than trials on a grid, and shows that random search is a natural baseline against which to judge progress in the development of adaptive (sequential) hyper- parameter optimization algorithms.

Reading Digits in Natural Images with Unsupervised Feature Learning

TL;DR: A new benchmark dataset for research use is introduced containing over 600,000 labeled digits cropped from Street View images, and variants of two recently proposed unsupervised feature learning methods are employed, finding that they are convincingly superior on benchmarks.
Proceedings Article

Random Features for Large-Scale Kernel Machines

TL;DR: Two sets of random features are explored, provided convergence bounds on their ability to approximate various radial basis kernels, and it is shown that in large-scale classification and regression tasks linear machine learning algorithms applied to these features outperform state-of-the-art large- scale kernel machines.
Proceedings Article

Algorithms for Hyper-Parameter Optimization

TL;DR: This work contributes novel techniques for making response surface models P(y|x) in which many elements of hyper-parameter assignment (x) are known to be irrelevant given particular values of other elements.
Related Papers (5)