scispace - formally typeset
Proceedings ArticleDOI

Identification of ovarian mass through ultrasound images using machine learning techniques

01 Nov 2015-pp 137-140

TL;DR: Preliminary results depict that the proposed technique can be reliable for ovarian tumor classification as this system is fully automated, advantageous and cost-effective too.

AbstractToday ovarian cancer is second most perilous cause of cancer deaths in women after breast cancer. In this work, we have developed system which acquires ultrasound images and using image processing and machine learning algorithms accurately classify benign and malignant tumors in ovarian cancer. This technique denoise image using wavelet transform, grey level texture features extracted using GLCM(grey level co-occurrence algorithm), extracted features will be trained through SVM(Support vector machine) and selected non-redundant features selected through Relief-F will be further train and test through SVM for output. Proposed technique was validated by 60 malignant and 60 benign images of patients. On evaluating classifier for 14-texture descriptors give 74% and relief-F gives 82% accuracy. After selecting 6 features from 14 features it will give accuracy 86% and relief-F gives 92% accuracy. Thus, the features are significant for result and preliminary results depict that the proposed technique can be reliable for ovarian tumor classification as this system is fully automated, advantageous and cost-effective too.

...read more


Citations
More filters
Journal ArticleDOI
TL;DR: Leading machine learning approaches and research directions in US are reviewed, with an emphasis on recent ML advances, and an outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization is presented.
Abstract: Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited image quality control. Tremendous opportunities have arisen in the last decade as a result of exponential growth in available computational power coupled with progressive miniaturization of US devices. As US devices become smaller, enhanced computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, we review leading machine learning (ML) approaches and research directions in US, with an emphasis on recent ML advances. We also present our outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization.

82 citations

Journal ArticleDOI
TL;DR: The experimental results show that not only are the segmentation effects of the proposed method improved compared with those of the traditional machine learning and other deep learning methods but also the method has a high adaptive segmentation ability for various medical images.
Abstract: Medical image segmentation is a key technology for image guidance. Therefore, the advantages and disadvantages of image segmentation play an important role in image-guided surgery. Traditional machine learning methods have achieved certain beneficial effects in medical image segmentation, but they have problems such as low classification accuracy and poor robustness. Deep learning theory has good generalizability and feature extraction ability, which provides a new idea for solving medical image segmentation problems. However, deep learning has problems in terms of its application to medical image segmentation: one is that the deep learning network structure cannot be constructed according to medical image characteristics; the other is that the generalizability y of the deep learning model is weak. To address these issues, this paper first adapts a neural network to medical image features by adding cross-layer connections to a traditional convolutional neural network. In addition, an optimized convolutional neural network model is established. The optimized convolutional neural network model can segment medical images using the features of two scales simultaneously. At the same time, to solve the generalizability problem of the deep learning model, an adaptive distribution function is designed according to the position of the hidden layer, and then the activation probability of each layer of neurons is set. This enhances the generalizability of the dropout model, and an adaptive dropout model is proposed. This model better addresses the problem of the weak generalizability of deep learning models. Based on the above ideas, this paper proposes a medical image segmentation algorithm based on an optimized convolutional neural network with adaptive dropout depth calculation. An ultrasonic tomographic image and lumbar CT medical image were separately segmented by the method of this paper. The experimental results show that not only are the segmentation effects of the proposed method improved compared with those of the traditional machine learning and other deep learning methods but also the method has a high adaptive segmentation ability for various medical images. The research work in this paper provides a new perspective for research on medical image segmentation.

7 citations


Cites methods from "Identification of ovarian mass thro..."

  • ...Specifically, the traditional machine learning methods proposed in [39, 40] have the lowest Dice values after image segmentation, 0....

    [...]

  • ...As seen from Figure 4, methods [39, 40] have segmentation errors, which are marked with blue and red circles, respectively....

    [...]

  • ...It can be seen from Table 1 that the segmentation effect of the medical image segmentation algorithm based on the optimized convolutional neural network-adaptive dropout depth calculation is better than that of the traditional machine learning segmentation algorithms proposed in [39, 40] and has a large increase over the segmentation effect of the deep learning algorithms proposed in [41–44]....

    [...]

Journal ArticleDOI
TL;DR: Diverse types of entropies employed in the development of CAD systems for the diagnosis of abnormalities in the medical images can be used to differentiate the images based on the severity of the abnormalities and for other biomedical applications.
Abstract: Automation of diagnosis process in medical imaging using various computer-aided techniques is a leading topic of research. Among many computer-aided methods, nonlinear entropies are widely applied in the development of automated algorithms to diagnose abnormalities present in medical images. The use of entropy features in development of Computer-Aided Diagnosis (CAD) may enhance the accuracy of the system. Entropy features depict the nonlinearity of images and thereby the presence of complexity in the images. Various types of entropies have been employed in medical image analysis for automated diagnosis of abnormalities present in the images. This paper focuses on the diverse types of entropies employed in the development of CAD systems for the diagnosis of abnormalities in the medical images. In addition to the diagnosis, these entropies can be used to differentiate the images based on the severity of the abnormalities and for other biomedical applications.

2 citations

Journal ArticleDOI
TL;DR: The focus of this article is women's imaging; nonetheless, the principles described apply to all domains of medical imaging, including databases, data integrity, and characteristics of data suitable for machine learning projects.
Abstract: OBJECTIVE. Data engineering is the foundation of effective machine learning model development and research. The accuracy and clinical utility of machine learning models fundamentally depend on the ...

1 citations

Proceedings ArticleDOI
01 Jul 2020
TL;DR: An improved whale search optimization technique for segmentation and cascaded as one fusion feature that can represent both the semantic context and the texture patterns distributed in the image.
Abstract: In this paper, we propose an improved whale search optimization technique for ovarian tumor segmentation in ultrasound images. First, we collect the feature from input images and extract to improve the quality of training data set which extracted from each of the images as the low-level texture features. Second, we introduce an improved whale search optimization technique for segmentation and cascaded as one fusion feature that can represent both the semantic context and the texture patterns distributed in the image. The proposed design is implemented in MATLAB tool and the performance is compare with the existing state-of-art techniques. The performance comparison shows the effectiveness of proposed design over existing segmentation designs.

References
More filters
Book
Vladimir Vapnik1
01 Jan 1995
TL;DR: Setting of the learning problem consistency of learning processes bounds on the rate of convergence ofLearning processes controlling the generalization ability of learning process constructing learning algorithms what is important in learning theory?
Abstract: Setting of the learning problem consistency of learning processes bounds on the rate of convergence of learning processes controlling the generalization ability of learning processes constructing learning algorithms what is important in learning theory?.

38,164 citations


"Identification of ovarian mass thro..." refers methods in this paper

  • ...SVM uses dot product of features space for creating an optimal hyper-plane which maximize margin between two classes of inputs and this dot product of feature space is known as kernels [19]....

    [...]

01 Jan 1998
TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Abstract: A comprehensive look at learning and generalization theory. The statistical theory of learning and generalization concerns the problem of choosing desired functions on the basis of empirical data. Highly applicable to a variety of computer science and robotics fields, this book offers lucid coverage of the theory as a whole. Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.

26,121 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Abstract: Multiresolution representations are effective for analyzing the information content of images. The properties of the operator which approximates a signal at a given resolution were studied. It is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2/sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions. In L/sup 2/(R), a wavelet orthonormal basis is a family of functions which is built by dilating and translating a unique function psi (x). This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror filters. Wavelet representation lies between the spatial and Fourier domains. For images, the wavelet representation differentiates several spatial orientations. The application of this representation to data compression in image coding, texture discrimination and fractal analysis is discussed. >

19,033 citations

Journal ArticleDOI
01 Nov 1973
TL;DR: These results indicate that the easily computable textural features based on gray-tone spatial dependancies probably have a general applicability for a wide variety of image-classification applications.
Abstract: Texture is one of the important characteristics used in identifying objects or regions of interest in an image, whether the image be a photomicrograph, an aerial photograph, or a satellite image. This paper describes some easily computable textural features based on gray-tone spatial dependancies, and illustrates their application in category-identification tasks of three different kinds of image data: photomicrographs of five kinds of sandstones, 1:20 000 panchromatic aerial photographs of eight land-use categories, and Earth Resources Technology Satellite (ERTS) multispecial imagery containing seven land-use categories. We use two kinds of decision rules: one for which the decision regions are convex polyhedra (a piecewise linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89 percent for the photomicrographs, 82 percent for the aerial photographic imagery, and 83 percent for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

18,474 citations


"Identification of ovarian mass thro..." refers methods in this paper

  • ...Other statistical descriptors like Energy, Contrast, Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, Difference Entropy, Correlation, Sum of Squares, Inverse Two Information Measures of Correlation, Cluster Shade, Cluster Performance, Maximal Correlation Coefficient, Autocorrelation, Dissimilarity, and Maximum Probability are introduced by Heralick et al [5]....

    [...]

  • ...After all 14- texture statistical descriptors are calculated from co-occurrence matrices as proposed in [5]....

    [...]

Book
01 Jan 1998
TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Abstract: Introduction to a Transient World. Fourier Kingdom. Discrete Revolution. Time Meets Frequency. Frames. Wavelet Zoom. Wavelet Bases. Wavelet Packet and Local Cosine Bases. An Approximation Tour. Estimations are Approximations. Transform Coding. Appendix A: Mathematical Complements. Appendix B: Software Toolboxes.

17,299 citations


"Identification of ovarian mass thro..." refers background in this paper

  • ...Image denoising removes the additive noise like salt and pepper, speckle and Gaussian noise while retaining useful image features [16, 17]....

    [...]