scispace - formally typeset
Search or ask a question

Showing papers in "Complexity in 2020"


Journal ArticleDOI
TL;DR: This study explores different textual properties that can be used to distinguish fake contents from real and trains a combination of different machine learning algorithms using various ensemble methods and evaluates their performance on 4 real world datasets.
Abstract: The advent of the World Wide Web and the rapid adoption of social media platforms (such as Facebook and Twitter) paved the way for information dissemination that has never been witnessed in the human history before. With the current usage of social media platforms, consumers are creating and sharing more information than ever before, some of which are misleading with no relevance to reality. Automated classification of a text article as misinformation or disinformation is a challenging task. Even an expert in a particular domain has to explore multiple aspects before giving a verdict on the truthfulness of an article. In this work, we propose to use machine learning ensemble approach for automated classification of news articles. Our study explores different textual properties that can be used to distinguish fake contents from real. By using those properties, we train a combination of different machine learning algorithms using various ensemble methods and evaluate their performance on 4 real world datasets. Experimental evaluation confirms the superior performance of our proposed ensemble learner approach in comparison to individual learners.

164 citations


Journal ArticleDOI
TL;DR: A forecasting method of stock price based on CNN-LSTM which can provide a reliable stock price forecasting with the highest prediction accuracy and provides practical experience for scholars to study financial time series data is proposed.
Abstract: Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM. In the meanwhile, we use MLP, CNN, RNN, LSTM, CNN-RNN, and other forecasting models to predict the stock price one by one. Moreover, the forecasting results of these models are analyzed and compared. The data utilized in this research concern the daily stock prices from July 1, 1991, to August 31, 2020, including 7127 trading days. In terms of historical data, we choose eight features, including opening price, highest price, lowest price, closing price, volume, turnover, ups and downs, and change. Firstly, we adopt CNN to efficiently extract features from the data, which are the items of the previous 10 days. And then, we adopt LSTM to predict the stock price with the extracted feature data. According to the experimental results, the CNN-LSTM can provide a reliable stock price forecasting with the highest prediction accuracy. This forecasting method not only provides a new research idea for stock price forecasting but also provides practical experience for scholars to study financial time series data.

151 citations


Journal ArticleDOI
TL;DR: A novel hybrid MCDM model based on fuzzy rough-sets AHP, multistage weight synthesis, and PROMETHEE II is proposed as the methodology for the green performance evaluation of intelligent manufacturing.
Abstract: The design, planning, and implementation of intelligent manufacturing are mainly carried out from the perspectives of meeting the needs of mass customization, improving manufacturing capacity, and innovating business pattern currently. Environmental and social factors should be systematically integrated into the life cycle of intelligent manufacturing. In view of this, a green performance evaluation methodology of intelligent manufacturing driven by digital twin is proposed in this paper. Digital twin framework, which constructs the bidirectional mapping and real-time data interaction between physical entity and digital model, provides the green performance evaluation with a total factor virtual image of the whole life cycle to meet the monitoring and simulation requirements of the evaluation information source and demand. Driven by the digital twin framework, a novel hybrid MCDM model based on fuzzy rough-sets AHP, multistage weight synthesis, and PROMETHEE II is proposed as the methodology for the green performance evaluation of intelligent manufacturing. The model is tested and validated on a study of the green performance evaluation of remote operation and maintenance service project evaluation for an air conditioning enterprise. Testing demonstrates that the proposed hybrid model driven by digital twin can enable a stable and reasonable evaluation result. A sensitivity analysis was carried out by means of 27 scenarios, the results of which showed a high degree of stability.

143 citations


Journal ArticleDOI
TL;DR: A 5D multistable four-wing memristive hyperchaotic system (FWMHS) with linear equilibrium points with dynamic characteristics of equilibrium point, perpetual point, bifurcation diagram, Lyapunov exponential spectrum, phase portraits, and spectral entropy is proposed.
Abstract: By introducing a flux-controlled memristor model with absolute value function, a 5D multistable four-wing memristive hyperchaotic system (FWMHS) with linear equilibrium points is proposed in this paper. The dynamic characteristics of the system are studied in terms of equilibrium point, perpetual point, bifurcation diagram, Lyapunov exponential spectrum, phase portraits, and spectral entropy. This system is of the group of systems that have coexisting attractors. In addition, the circuit implementation scheme is also proposed. Then, a secure communication scheme based on the proposed 5D multistable FWMHS with disturbance inputs is designed. Based on parametric modulation theory and Lyapunov stability theory, synchronization and secure communication between the transmitter and receiver are realized and two message signals are recovered by a convenient robust high-order sliding mode adaptive controller. Through the proposed adaptive controller, the unknown parameters can be identified accurately, the gain of the receiver system can be adjusted continuously, and the disturbance inputs of the transmitter and receiver can be suppressed effectively. Thereafter, the convergence of the proposed scheme is proven by means of an appropriate Lyapunov functional and the effectiveness of the theoretical results is testified via numerical simulations.

125 citations


Journal ArticleDOI
TL;DR: This paper employs a popular machine learning method, support vector regression (SVR), to forecast pollutant and particulate levels and to predict the air quality index (AQI), and demonstrates that SVR with RBF kernel allows us to accurately predict hourly pollutant concentrations.
Abstract: Predicting air quality is a complex task due to the dynamic nature, volatility, and high variability in time and space of pollutants and particulates. At the same time, being able to model, predict, and monitor air quality is becoming more and more relevant, especially in urban areas, due to the observed critical impact of air pollution on citizens’ health and the environment. In this paper, we employ a popular machine learning method, support vector regression (SVR), to forecast pollutant and particulate levels and to predict the air quality index (AQI). Among the various tested alternatives, radial basis function (RBF) was the type of kernel that allowed SVR to obtain the most accurate predictions. Using the whole set of available variables revealed a more successful strategy than selecting features using principal component analysis. The presented results demonstrate that SVR with RBF kernel allows us to accurately predict hourly pollutant concentrations, like carbon monoxide, sulfur dioxide, nitrogen dioxide, ground-level ozone, and particulate matter 2.5, as well as the hourly AQI for the state of California. Classification into six AQI categories defined by the US Environmental Protection Agency was performed with an accuracy of 94.1% on unseen validation data.

90 citations


Journal ArticleDOI
TL;DR: In this article, the authors introduce some of the basic principles of complex systems science, including complexity profiles, the tradeoff between efficiency and adaptability, the necessity of matching the complexity of systems to that of their environments, multiscale analysis, and evolutionary processes.
Abstract: The standard assumptions that underlie many conceptual and quantitative frameworks do not hold for many complex physical, biological, and social systems. Complex systems science clarifies when and why such assumptions fail and provides alternative frameworks for understanding the properties of complex systems. This review introduces some of the basic principles of complex systems science, including complexity profiles, the tradeoff between efficiency and adaptability, the necessity of matching the complexity of systems to that of their environments, multiscale analysis, and evolutionary processes. Our focus is on the general properties of systems as opposed to the modeling of specific dynamics; rather than provide a comprehensive review, we pedagogically describe a conceptual and analytic approach for understanding and interacting with the complex systems of our world. This paper assumes only a high school mathematical and scientific background so that it may be accessible to academics in all fields, decision-makers in industry, government, and philanthropy, and anyone who is interested in systems and society.

74 citations


Journal ArticleDOI
TL;DR: A novel perturbation algorithm for data encryption based on double chaotic systems that has enough ability to achieve low residual intelligibility with high quality recovered data, high sensitivity, and high security performance compared to some other recent literature approaches.
Abstract: Chaos-based encryption algorithms offer many advantages over conventional cryptographic algorithms, such as speed, high security, affordable overheads for computation, and procedure power. In this paper, we propose a novel perturbation algorithm for data encryption based on double chaotic systems. A new image encryption algorithm based on the proposed chaotic maps is introduced. The proposed chaotification method is a hybrid technique that parallels and combines the chaotic maps. It is based on combination between Discrete Wavelet Transform (DWT) to decompose the original image into sub-bands and both permutation and diffusion properties are attained using the chaotic states and parameters of the proposed maps, which are then concerned in shuffling of pixel and operations of substitution, respectively. Security, statistical test analyses, and comparison with other techniques indicate that the proposed algorithm has promising effect and it can resist several common attacks. Namely, the average values for UACI and NPCR metrics were 33.6248% and 99.6472%, respectively. Additionally, unscrambling quality can fulfill security and execution prerequisites as evidenced by PSNR (9.005955) and entropy (7.999275) values. In sum, the proposed method has enough ability to achieve low residual intelligibility with high quality recovered data, high sensitivity, and high security performance compared to some other recent literature approaches.

72 citations


Journal ArticleDOI
TL;DR: Numerical results for different cases of the fractional-order are presented graphically, which show the effectiveness of the proposed procedure and revealed that the proposed scheme is very effective, suitable for fractional PDEs, and may be viewed as a generalization of the existing methods for solving integer and noninteger order differential equations.
Abstract: The role of integer and noninteger order partial differential equations (PDE) is essential in applied sciences and engineering. Exact solutions of these equations are sometimes difficult to find. Therefore, it takes time to develop some numerical techniques to find accurate numerical solutions of these types of differential equations. This work aims to present a novel approach termed as fractional iteration algorithm-I for finding the numerical solution of nonlinear noninteger order partial differential equations. The proposed approach is developed and tested on nonlinear fractional-order Fornberg–Whitham equation and employed without using any transformation, Adomian polynomials, small perturbation, discretization, or linearization. The fractional derivatives are taken in the Caputo sense. To assess the efficiency and precision of the suggested method, the tabulated numerical results are compared with the standard variational iteration method and the exact solution as well. In addition, numerical results for different cases of the fractional-order are presented graphically, which show the effectiveness of the proposed procedure and revealed that the proposed scheme is very effective, suitable for fractional PDEs, and may be viewed as a generalization of the existing methods for solving integer and noninteger order differential equations.

66 citations


Journal ArticleDOI
TL;DR: This work offers the analysis, design, and simulation of a new neural network- (NN) based nonlinear fractional control structure and compares its performance with that of nonlinear neural (NNPID) controllers on the trajectory tracking of the DDMR with different trajectories as study cases.
Abstract: The design of a swarm optimization-based fractional control for engineering application is an active research topic in the optimization analysis. This work offers the analysis, design, and simulation of a new neural network- (NN) based nonlinear fractional control structure. With suitable arrangements of the hidden layer neurons using nonlinear and linear activation functions in the hidden and output layers, respectively, and with appropriate connection weights between different hidden layer neurons, a new class of nonlinear neural fractional-order proportional integral derivative (NNFOPID) controller is proposed and designed. It is obtained by approximating the fractional derivative and integral actions of the FOPID controller and applied to the motion control of nonholonomic differential drive mobile robot (DDMR). The proposed NNFOPID controller’s parameters consist of derivative, integral, and proportional gains in addition to fractional integral and fractional derivative orders. The tuning of these parameters makes the design of such a controller much more difficult than the classical PID one. To tackle this problem, a new swarm optimization algorithm, namely, MAPSO-EFFO algorithm, has been proposed by hybridization of the modified adaptive particle swarm optimization (MAPSO) and the enhanced fruit fly optimization (EFFO) to tune the parameters of the NNFOPID controller. Firstly, we developed a modified adaptive particle swarm optimization (MAPSO) algorithm by adding an initial run phase with a massive number of particles. Secondly, the conventional fruit fly optimization (FFO) algorithm has been modified by increasing the randomness in the initialization values of the algorithm to cover wider searching space and then implementing a variable searching radius during the update phase by starting with a large radius which decreases gradually during the searching phase. The tuning of the parameters of the proposed NNFOPID controller is carried out by reducing the MS error of 0.000059, whereas the MSE of the nonlinear neural system (NNPID) is equivalent to 0.00079. The NNFOPID controller also decreased control signals that drive DDMR motors by approximately 45 percent compared to NNPID and thus reduced energy consumption in circular trajectories. The numerical simulations revealed the excellent performance of the designed NNFOPID controller by comparing its performance with that of nonlinear neural (NNPID) controllers on the trajectory tracking of the DDMR with different trajectories as study cases.

65 citations


Journal ArticleDOI
TL;DR: An improved algorithm to the variational iteration algorithm-II (VIA-II) for the numerical treatment of diffusion as well as convection-diffusion equations is presented, which yields accurate results, converges rapidly, and offers better robustness in comparison with other methods used in the literature.
Abstract: Variational iteration method has been extensively employed to deal with linear and nonlinear differential equations of integer and fractional order. The key property of the technique is its ability and flexibility to investigate linear and nonlinear models conveniently and accurately. The current study presents an improved algorithm to the variational iteration algorithm-II (VIA-II) for the numerical treatment of diffusion as well as convection-diffusion equations. This newly introduced modification is termed as the modified variational iteration algorithm-II (MVIA-II). The convergence of the MVIA-II is studied in the case of solving nonlinear equations. The main advantage of the MVIA-II improvement is an auxiliary parameter which makes sure a fast convergence of the standard VIA-II iteration algorithm. In order to verify the stability, accuracy, and computational speed of the method, the obtained solutions are compared numerically and graphically with the exact ones as well as with the results obtained by the previously proposed compact finite difference method and second kind Chebyshev wavelets. The comparison revealed that the modified version yields accurate results, converges rapidly, and offers better robustness in comparison with other methods used in the literature. Moreover, the basic idea depicted in this study is relied upon the possibility of the MVIA-II being utilized to handle nonlinear differential equations that arise in different fields of physical and biological sciences. A strong motivation for such applications is the fact that any discretization, transformation, or any assumptions are not required for this proposed algorithm in finding appropriate numerical solutions.

61 citations


Journal ArticleDOI
TL;DR: The results show that the classification performance based on the fusion features of eye movement behavior and physiological signals is better than using a single behavior feature and a single physiological feature; compared with previous methods, the proposed method for depression recognition achieves better classification results.
Abstract: This paper presents a method of depression recognition based on direct measurement of affective disorder. Firstly, visual emotional stimuli are used to obtain eye movement behavior signals and physiological signals directly related to mood. Then, in order to eliminate noise and redundant information and obtain better classification features, statistical methods (FDR corrected t-test) and principal component analysis (PCA) are used to select features of eye movement behavior and physiological signals. Finally, based on feature extraction, we use kernel extreme learning machine (KELM) to recognize depression based on PCA features. The results show that, on the one hand, the classification performance based on the fusion features of eye movement behavior and physiological signals is better than using a single behavior feature and a single physiological feature; on the other hand, compared with previous methods, the proposed method for depression recognition achieves better classification results. This study is of great value for the establishment of an automatic depression diagnosis system for clinical use.

Journal ArticleDOI
TL;DR: Five different models based on deep neural network (DNN) are created to understand the behavior of terrorist activities and it is demonstrated that the performance in DNN is more than 95% in terms of accuracy, precision, recall, and F1-Score, while ANN and traditional machine learning algorithms have achieved a maximum of 83% accuracy.
Abstract: One of the most important threats to today’s civilization is terrorism. Terrorism not only disturbs the law and order situations in a society but also affects the quality of lives of humans and mak...

Journal ArticleDOI
TL;DR: The Routh–Hurwitz criterion is used to prove the rationality of the controller, and the feasibility and effectiveness of the proposed synchronization method are proved by numerical simulations.
Abstract: In this work, a novel 6D four-wing hyperchaotic system with a line equilibrium based on a flux-controlled memristor model is proposed. The novel system is inspired from an existing 5D four-wing hyperchaotic system introduced by Zarei (2015). Fundamental properties of the novel system are discussed, and its complex behaviors are characterized using phase portraits, Lyapunov exponential spectrum, bifurcation diagram, and spectral entropy. When a suitable set of parameters are chosen, the system exhibits a rich repertoire of dynamic behaviors including double-period bifurcation of the quasiperiod, a single two-wing, and four-wing chaotic attractors. Further analysis of the novel system shows that the multiple coexisting attractors can be observed with different system parameter values and initial values. Moreover, the feasibility of the proposed mathematical model is also presented by using Multisim simulations based on an electronic analog of the model. Finally, the active control method is used to design the appropriate controller to realize the synchronization between the proposed 6D memristive hyperchaotic system and the 6D hyperchaotic Yang system with different structures. The Routh–Hurwitz criterion is used to prove the rationality of the controller, and the feasibility and effectiveness of the proposed synchronization method are proved by numerical simulations.

Journal ArticleDOI
TL;DR: This research work considers four CNN architectures, namely, VGG-16, V GG-19, ResNet, and Inception V3, and uses feature extraction and parameter-tuning to identify and classify tomato leaf diseases, and finds that all architectures perform better on the laboratory-based dataset than on field-based data.
Abstract: Vegetable and fruit plants facilitate around 7.5 billion people around the globe, playing a crucial role in sustaining life on the planet. The rapid increase in the use of chemicals such as fungicides and bactericides to curtail plant diseases is causing negative effects on the agro-ecosystem. The high scale prevalence of diseases in crops affects the production quantity and quality. Solving the problem of early identification/diagnosis of diseases by exploiting a quick and consistent reliable method will benefit the farmers. In this context, our research work focuses on classification and identification of tomato leaf diseases using convolutional neural network (CNN) techniques. We consider four CNN architectures, namely, VGG-16, VGG-19, ResNet, and Inception V3, and use feature extraction and parameter-tuning to identify and classify tomato leaf diseases. We test the underlying models on two datasets, a laboratory-based dataset and self-collected data from the field. We observe that all architectures perform better on the laboratory-based dataset than on field-based data, with performance on various metrics showing variance in the range 10%–15%. Inception V3 is identified as the best performing algorithm on both datasets.

Journal ArticleDOI
Guoqiang Zhu1, Sen Wang1, Lingfang Sun1, Weichun Ge, Xiuyu Zhang1 
TL;DR: A fuzzy adaptive output feedback dynamic surface sliding-mode control scheme is presented for a class of quadrotor unmanned aerial vehicles and Stability analysis proved that all signals of the closed-loop system are uniformly ultimately bounded.
Abstract: In this paper, a fuzzy adaptive output feedback dynamic surface sliding-mode control scheme is presented for a class of quadrotor unmanned aerial vehicles (UAVs). The framework of the controller design process is divided into two stages: the attitude control process and the position control process. The main features of this work are (1) a nonlinear observer is employed to predict the motion velocities of the quadrotor UAV; therefore, only the position signals are needed for the position tracking controller design; (2) by using the minimum learning technology, there is only one parameter which needs to be updated online at each design step and the computational burden can be greatly reduced; (3) a performance function is introduced to transform the tracking error into a new variable which can make the tracking error of the system satisfy the prescribed performance indicators; (4) the sliding-mode surface is introduced in the process of the controller design, and the robustness of the system is improved. Stability analysis proved that all signals of the closed-loop system are uniformly ultimately bounded. The results of the hardware-in-the-loop simulation validate the effectiveness of the proposed control scheme.

Journal ArticleDOI
TL;DR: This paper proposes a novel approach integrating the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), grey wolf optimization (GWO), and multiple kernel extreme learning machine (MKELM) for STLF, showing that the ICEEMdAN-GWO- MKELM is very effective for STLf.
Abstract: Short-term load forecasting (STLF) is an essential and challenging task for power- or energy-providing companies. Recent research has demonstrated that a framework called “decomposition and ensemble” is very powerful for energy forecasting. To improve the effectiveness of STLF, this paper proposes a novel approach integrating the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), grey wolf optimization (GWO), and multiple kernel extreme learning machine (MKELM), namely, ICEEMDAN-GWO-MKELM, for STLF, following this framework. The proposed ICEEMDAN-GWO-MKELM consists of three stages. First, the complex raw load data are decomposed into a couple of relatively simple components by ICEEMDAN. Second, MKELM is used to forecast each decomposed component individually. Specifically, we use GWO to optimize both the weight and the parameters of every single kernel in extreme learning machine to improve the forecasting ability. Finally, the results of all the components are aggregated as the final forecasting result. The extensive experiments reveal that the ICEEMDAN-GWO-MKELM can outperform several state-of-the-art forecasting approaches in terms of some evaluation criteria, showing that the ICEEMDAN-GWO-MKELM is very effective for STLF.

Journal ArticleDOI
TL;DR: The experimental results demonstrate that the proposed pretrained CNN-based framework outperforms the existing techniques for the detection of exudates.
Abstract: In the field of ophthalmology, diabetic retinopathy (DR) is a major cause of blindness. DR is based on retinal lesions including exudate. Exudates have been found to be one of the signs and serious DR anomalies, so the proper detection of these lesions and the treatment should be done immediately to prevent loss of vision. In this paper, pretrained convolutional neural network- (CNN-) based framework has been proposed for the detection of exudate. Recently, deep CNNs were individually applied to solve the specific problems. But, pretrained CNN models with transfer learning can utilize the previous knowledge to solve the other related problems. In the proposed approach, initially data preprocessing is performed for standardization of exudate patches. Furthermore, region of interest (ROI) localization is used to localize the features of exudates, and then transfer learning is performed for feature extraction using pretrained CNN models (Inception-v3, Residual Network-50, and Visual Geometry Group Network-19). Moreover, the fused features from fully connected (FC) layers are fed into the softmax classifier for exudate classification. The performance of proposed framework has been analyzed using two well-known publicly available databases such as e-Ophtha and DIARETDB1. The experimental results demonstrate that the proposed pretrained CNN-based framework outperforms the existing techniques for the detection of exudates.

Journal ArticleDOI
TL;DR: By using the chaoticity of the novel hyperchaotic system, a random number generator (RNG) for practical image encryption applications is developed and security analyses are carried out with the RNG and image encryption designs.
Abstract: Novel memristive hyperchaotic system designs and their engineering applications have received considerable critical attention. In this paper, a novel multistable 5D memristive hyperchaotic system and its application are introduced. The interesting aspect of this chaotic system is that it has different types of coexisting attractors, chaos, hyperchaos, periods, and limit cycles. First, a novel 5D memristive hyperchaotic system is proposed by introducing a flux-controlled memristor with quadratic nonlinearity into an existing 4D four-wing chaotic system as a feedback term. Then, the phase portraits, Lyapunov exponential spectrum, bifurcation diagram, and spectral entropy are used to analyze the basic dynamics of the 5D memristive hyperchaotic system. For a specific set of parameters, we find an unusual metastability, which shows the transition from chaotic to periodic (period-2 and period-3) dynamics. Moreover, its circuit implementation is also proposed. By using the chaoticity of the novel hyperchaotic system, we have developed a random number generator (RNG) for practical image encryption applications. Furthermore, security analyses are carried out with the RNG and image encryption designs.

Journal ArticleDOI
TL;DR: A multichannel deep attention neural network (DANN) was proposed by integrating multiple layers of neural networks, attention mechanism, and feature fusion to capture the interrelationships in multimodality data and shows promise for deep learning models to aid the future automated clinical diagnosis of ASD.
Abstract: Autism spectrum disorder (ASD) is a developmental disorder that impacts more than 1.6% of children aged 8 across the United States. It is characterized by impairments in social interaction and communication, as well as by a restricted repertoire of activity and interests. The current standardized clinical diagnosis of ASD remains to be a subjective diagnosis, mainly relying on behavior-based tests. However, the diagnostic process for ASD is not only time consuming, but also costly, causing a tremendous financial burden for patients’ families. Therefore, automated diagnosis approaches have been an attractive solution for earlier identification of ASD. In this work, we set to develop a deep learning model for automated diagnosis of ASD. Specifically, a multichannel deep attention neural network (DANN) was proposed by integrating multiple layers of neural networks, attention mechanism, and feature fusion to capture the interrelationships in multimodality data. We evaluated the proposed multichannel DANN model on the Autism Brain Imaging Data Exchange (ABIDE) repository with 809 subjects (408 ASD patients and 401 typical development controls). Our model achieved a state-of-the-art accuracy of 0.732 on ASD classification by integrating three scales of brain functional connectomes and personal characteristic data, outperforming multiple peer machine learning models in a k-fold cross validation experiment. Additional k-fold and leave-one-site-out cross validation were conducted to test the generalizability and robustness of the proposed multichannel DANN model. The results show promise for deep learning models to aid the future automated clinical diagnosis of ASD.

Journal ArticleDOI
TL;DR: Experimental results prove the advantages of PRkeyword+pop in searching for a set of satisfactory papers compared with other competitive approaches and conduct large-scale experiments on the real-life Hep-Th dataset to further demonstrate the usefulness and feasibility of the proposed approach.
Abstract: Nowadays, scholar recommender systems often recommend academic papers based on users’ personalized retrieval demands. Typically, a recommender system analyzes the keywords typed by a user and then returns his or her preferred papers, in an efficient and economic manner. In practice, one paper often contains partial keywords that a user is interested in. Therefore, the recommender system needs to return the user a set of papers that collectively covers all the queried keywords. However, existing recommender systems only use the exact keyword matching technique for recommendation decisions, while neglecting the correlation relationships among different papers. As a consequence, it may output a set of papers from multiple disciplines that are different from the user’s real research field. In view of this shortcoming, we propose a keyword-driven and popularity-aware paper recommendation approach based on an undirected paper citation graph, named PRkeyword+pop. At last, we conduct large-scale experiments on the real-life Hep-Th dataset to further demonstrate the usefulness and feasibility of PRkeyword+pop. Experimental results prove the advantages of PRkeyword+pop in searching for a set of satisfactory papers compared with other competitive approaches.

Journal ArticleDOI
TL;DR: It is ascertained that the SSA-ELM model is a qualified data-intelligent model for monthly river flow prediction at the Tigris river, Iraq, which outperformed the classical ELM and other artificial intelligence models.
Abstract: The capability of the extreme learning machine (ELM) model in modeling stochastic, nonlinear, and complex hydrological engineering problems has been proven remarkably. The classical ELM training algorithm is based on a nontuned and random procedure that might not be efficient in convergence of excellent performance or possible entrapment in the local minima problem. This current study investigates the integration of a newly explored metaheuristic algorithm (i.e., Salp Swarm Algorithm (SSA)) with the ELM model to forecast monthly river flow. Twenty years of river flow data time series of the Tigris river at the Baghdad station, Iraq, is used as a case study. Different input combinations are applied for constructing the predictive models based on antecedent values. The results are evaluated based on several statistical measures and graphical presentations. The river flow forecast accuracy of SSA-ELM outperformed the classical ELM and other artificial intelligence (AI) models. Over the testing phase, the proposed SSA-ELM model yielded a satisfactory enhancement in the level accuracies (8.4 and 13.1 percentage of augmentation for RMSE and MAE, respectively) against the classical ELM model. In summary, the study ascertains that the SSA-ELM model is a qualified data-intelligent model for monthly river flow prediction at the Tigris river, Iraq.

Journal ArticleDOI
TL;DR: This paper presents an approach based on the feedforward neural network (FNN) model for the simulation and prediction of dissolved oxygen (DO) in the Nyando River basin in Kenya and finds that the combination of LULC and the water quality parameters presenting the same degree of accuracy for both FNN and MLR models.
Abstract: The process of predicting water quality over a catchment area is complex due to the inherently nonlinear interactions between the water quality parameters and their temporal and spatial variability. The empirical, conceptual, and physical distributed models for the simulation of hydrological interactions may not adequately represent the nonlinear dynamics in the process of water quality prediction, especially in watersheds with scarce water quality monitoring networks. To overcome the lack of data in water quality monitoring and prediction, this paper presents an approach based on the feedforward neural network (FNN) model for the simulation and prediction of dissolved oxygen (DO) in the Nyando River basin in Kenya. To understand the influence of the contributing factors to the DO variations, the model considered the inputs from the available water quality parameters (WQPs) including discharge, electrical conductivity (EC), pH, turbidity, temperature, total phosphates (TPs), and total nitrates (TNs) as the basin land-use and land-cover (LULC) percentages. The performance of the FNN model is compared with the multiple linear regression (MLR) model. For both FNN and MLR models, the use of the eight water quality parameters yielded the best DO prediction results with respective Pearson correlation coefficient R values of 0.8546 and 0.6199. In the model optimization, EC, TP, TN, pH, and temperature were most significant contributing water quality parameters with 85.5% in DO prediction. For both models, LULC gave the best results with successful prediction of DO at nearly 98% degree of accuracy, with the combination of LULC and the water quality parameters presenting the same degree of accuracy for both FNN and MLR models.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the impact of COVID-19 on the global economy, more specifically, the impact on the financial movement of Crude Oil price and three US stock indexes: DJI, S&P 500, and NASDAQ Composite.
Abstract: COVID-19 is an infectious disease that mostly affects the respiratory system. At the time of this research being performed, there were more than 1.4 million cases of COVID-19, and one of the biggest anxieties is not just our health, but our livelihoods, too. In this research, authors investigate the impact of COVID-19 on the global economy, more specifically, the impact of COVID-19 on the financial movement of Crude Oil price and three US stock indexes: DJI, S&P 500, and NASDAQ Composite. The proposed system for predicting commodity and stock prices integrates the stationary wavelet transform (SWT) and bidirectional long short-term memory (BDLSTM) networks. Firstly, SWT is used to decompose the data into approximation and detail coefficients. After decomposition, data of Crude Oil price and stock market indexes along with COVID-19 confirmed cases were used as input variables for future price movement forecasting. As a result, the proposed system BDLSTM + WT-ADA achieved satisfactory results in terms of five-day Crude Oil price forecast.

Journal ArticleDOI
TL;DR: The research shows that the upstream and downstream auto parts enterprises based on low-carbon competition and cooperation can effectively manage the carbon footprint of the whole supply chain through the sharing of responsibilities and resources among enterprises, so as to reduce the overall carbon emissions of the supply chain system.
Abstract: Affected by the Internet, computer, information technology, etc., building a smart city has become a key task of socialist construction work. The smart city has always regarded green and low-carbon development as one of the goals, and the carbon emissions of the auto parts industry cannot be ignored, so we should carry out energy conservation and emission reduction. With the rapid development of the domestic auto parts industry, the number of car ownership has increased dramatically, producing more and more CO2 and waste. Facing the pressure of resources, energy, and environment, the effective and circular operation of the auto parts supply chain under the low-carbon transformation is not only a great challenge, but also a development opportunity. Under the background of carbon emission, this paper establishes a decision-making optimization model of the low-carbon supply chain of auto parts based on carbon emission responsibility sharing and resource sharing. This paper analyzes the optimal decision-making behavior and interaction of suppliers, producers, physical retailers, online retailers, demand markets, and recyclers in the auto parts industry, constructs the economic and environmental objective functions of low-carbon supply chain management, applies variational inequality to analyze the optimal conditions of the whole low-carbon supply chain system, and finally carries out simulation calculation. The research shows that the upstream and downstream auto parts enterprises based on low-carbon competition and cooperation can effectively manage the carbon footprint of the whole supply chain through the sharing of responsibilities and resources among enterprises, so as to reduce the overall carbon emissions of the supply chain system.

Journal ArticleDOI
TL;DR: This study proposes a local path planning algorithm based on the velocity obstacle (VO) method and modified quantum particle swarm optimization (MQPSO) for USV collision avoidance that can obtain the optimal values of the benchmark functions and effectively plan a collision-free path for a USV.
Abstract: An unmanned surface vehicle (USV) plans its global path before the mission starts. When dynamic obstacles appear during sailing, the planned global path must be adjusted locally to avoid collision. This study proposes a local path planning algorithm based on the velocity obstacle (VO) method and modified quantum particle swarm optimization (MQPSO) for USV collision avoidance. The collision avoidance model based on VO not only considers the velocity and course of the USV but also handles the variable velocity and course of an obstacle. According to the collision avoidance model, the USV needs to adjust its velocity and course simultaneously to avoid collision. Due to the kinematic constraints of the USV, the velocity window and course window of the USV are determined by the dynamic window approach (DWA). In summary, local path planning is transformed into a multiobjective optimization problem with multiple constraints in a continuous search space. The optimization problem is to obtain the USV’s optimal velocity variation and course variation to avoid collision and minimize its energy consumption under the rules of the International Regulations for Preventing Collisions at Sea (COLREGs) and the kinematic constraints of the USV. Since USV local path planning is completed in a short time, it is essential that the optimization algorithm can quickly obtain the optimal value. MQPSO is primarily proposed to meet that requirement. In MQPSO, the efficiency of quantum encoding in quantum computing and the optimization ability of representing the motion states of the particles with wave functions to cover the whole feasible solution space are combined. Simulation results show that the proposed algorithm can obtain the optimal values of the benchmark functions and effectively plan a collision-free path for a USV.

Journal ArticleDOI
TL;DR: In this article, the authors derive a measure known as effective information and describe its behavior in common network models, and show how subgraphs of nodes can be grouped into macronodes, reducing the size of a network while increasing its effective information.
Abstract: The connectivity of a network contains information about the relationships between nodes, which can denote interactions, associations, or dependencies. We show that this information can be analyzed by measuring the uncertainty (and certainty) contained in paths along nodes and links in a network. Specifically, we derive from first principles a measure known as effective information and describe its behavior in common network models. Networks with higher effective information contain more information in the relationships between nodes. We show how subgraphs of nodes can be grouped into macronodes, reducing the size of a network while increasing its effective information (a phenomenon known as causal emergence). We find that informative higher scales are common in simulated and real networks across biological, social, informational, and technological domains. These results show that the emergence of higher scales in networks can be directly assessed and that these higher scales offer a way to create certainty out of uncertainty.

Journal ArticleDOI
TL;DR: A convolutional recurrent neural network model that is composed of convolution neural network (CNN) portion and recurrent neuralnetwork (RNN) portion is designed that can learn the time correlation and space correlation of temperature changes from historical data through neural networks.
Abstract: Today, artificial intelligence and deep neural networks have been successfully used in many applications that have fundamentally changed people’s lives in many areas. However, very limited research has been done in the meteorology area, where meteorological forecasts still rely on simulations via extensive computing resources. In this paper, we propose an approach to using the neural network to forecast the future temperature according to the past temperature values. Specifically, we design a convolutional recurrent neural network (CRNN) model that is composed of convolution neural network (CNN) portion and recurrent neural network (RNN) portion. The model can learn the time correlation and space correlation of temperature changes from historical data through neural networks. To evaluate the proposed CRNN model, we use the daily temperature data of mainland China from 1952 to 2018 as training data. The results show that our model can predict future temperature with an error around 0.907°C.

Journal ArticleDOI
TL;DR: This paper presents a deep learning architecture that combines the fine-grained feature from PET and CT images that allow for the noninvasive diagnosis of lung cancer and conducts a comparative analysis of the two aspects of feature fusion and attention mechanism through quantitative evaluation metrics and the visualization of deep learning process.
Abstract: Lung cancer ranks among the most common types of cancer. Noninvasive computer-aided diagnosis can enable large-scale rapid screening of potential patients with lung cancer. Deep learning methods have already been applied for the automatic diagnosis of lung cancer in the past. Due to restrictions caused by single modality images of dataset as well as the lack of approaches that allow for a reliable extraction of fine-grained features from different imaging modalities, research regarding the automated diagnosis of lung cancer based on noninvasive clinical images requires further study. In this paper, we present a deep learning architecture that combines the fine-grained feature from PET and CT images that allow for the noninvasive diagnosis of lung cancer. The multidimensional (regarding the channel as well as spatial dimensions) attention mechanism is used to effectively reduce feature noise when extracting fine-grained features from each imaging modality. We conduct a comparative analysis of the two aspects of feature fusion and attention mechanism through quantitative evaluation metrics and the visualization of deep learning process. In our experiments, we obtained an area under the ROC curve of 0.92 (balanced accuracy = 0.72) and a more focused network attention which shows the effective extraction of the fine-grained feature from each imaging modality.

Journal ArticleDOI
TL;DR: It is worth mentioning that, for the first time, the grey property of GM(1,1) has been restored in structure, which is of significance for both academia and industry.
Abstract: GM(1,1) is a univariate grey prediction model with incomplete structural information, in which the real number form of the simulation or prediction data does not conform to the Nonuniqueness Principle of Grey theoretical solution. In light of the network model of GM(1,1), the connotation of grey action quantity is systematically analyzed and the interval grey number form of grey action quantity is restored under uncertain influencing factors. A novel GM(1,1) model is then constructed. The new model has the basic characteristics of the grey model under incomplete information. Moreover, it can be fully compatible with the traditional GM(1,1) model. The developed model is employed to the natural gas consumption prediction in China, showing that its predicting rationality is much better than that of the traditional GM(1,1) model. It is worth mentioning that, for the first time, the grey property of GM(1,1) has been restored in structure, which is of significance for both academia and industry.

Journal ArticleDOI
TL;DR: In this article, search engine query data from the Baidu Index were extracted to reveal the information search behaviors of the Chinese public regarding the earthquake risk from 2010 to 2012, and the data were also analyzed to discuss the characteristics of need for cognition on a nationwide scale and over the long term.
Abstract: There is a high need for cognition on earthquake risk to improve the public’s risk knowledge and risk awareness, so that they can make right decisions and take quick actions regarding mitigation measures and adjustments. In this study, search engine query data from the Baidu Index were extracted to reveal the information search behaviors of the Chinese public regarding the earthquake risk from 2010 to 2012. The data were also analyzed to discuss the characteristics of need for cognition on a nationwide scale and over the long term. The results showed that (1) graphic representations of need for cognition adhere to a “half-peak pattern” before and after earthquake events and (2) dimensions in psychological distance theory, such as temporal distance (time span between earthquakes), spatial distance, and social distance (geographic location) influence the need for cognition on earthquake risk that was the time and spatial discount effect. The implications for theory and practice regarding risk communication and management are discussed and concluded.