scispace - formally typeset
Proceedings ArticleDOI

Image and depth from a conventional camera with a coded aperture

Anat Levin, +3 more
- Vol. 26, Iss: 3, pp 70
TLDR
A simple modification to a conventional camera is proposed to insert a patterned occluder within the aperture of the camera lens, creating a coded aperture, and introduces a criterion for depth discriminability which is used to design the preferred aperture pattern.
Abstract
A conventional camera captures blurred versions of scene information away from the plane of focus. Camera systems have been proposed that allow for recording all-focus images, or for extracting depth, but to record both simultaneously has required more extensive hardware and reduced spatial resolution. We propose a simple modification to a conventional camera that allows for the simultaneous recovery of both (a) high resolution image information and (b) depth information adequate for semi-automatic extraction of a layered depth representation of the image. Our modification is to insert a patterned occluder within the aperture of the camera lens, creating a coded aperture. We introduce a criterion for depth discriminability which we use to design the preferred aperture pattern. Using a statistical model of images, we can recover both depth information and an all-focus image from single photographs taken with the modified camera. A layered depth map is then extracted, requiring user-drawn strokes to clarify layer assignments in some cases. The resulting sharp image and layered depth map can be combined for various photographic applications, including automatic scene segmentation, post-exposure refocusing, or re-rendering of the scene from an alternate viewpoint.

read more

Citations
More filters
Proceedings Article

Depth Map Prediction from a Single Image using a Multi-Scale Deep Network

TL;DR: In this article, two deep network stacks are employed to make a coarse global prediction based on the entire image, and another to refine this prediction locally, which achieves state-of-the-art results on both NYU Depth and KITTI.
Journal ArticleDOI

Single image dehazing

TL;DR: Results demonstrate the new method abilities to remove the haze layer as well as provide a reliable transmission estimate which can be used for additional applications such as image refocusing and novel view synthesis.
Journal ArticleDOI

Edge-preserving decompositions for multi-scale tone and detail manipulation

TL;DR: This paper advocates the use of an alternative edge-preserving smoothing operator, based on the weighted least squares optimization framework, which is particularly well suited for progressive coarsening of images and for multi-scale detail extraction.
Journal ArticleDOI

High-quality motion deblurring from a single image

TL;DR: A new algorithm for removing motion blur from a single image is presented using a unified probabilistic model of both blur kernel estimation and unblurred image restoration and is able to produce high quality deblurred results in low computation time.
Proceedings Article

Fast Image Deconvolution using Hyper-Laplacian Priors

TL;DR: This paper describes a deconvolution approach that is several orders of magnitude faster than existing techniques that use hyper-Laplacian priors and is able to deconvolve a 1 megapixel image in less than ~3 seconds, achieving comparable quality to existing methods that take ~20 minutes.
References
More filters
Journal ArticleDOI

A taxonomy and evaluation of dense two-frame stereo correspondence algorithms

TL;DR: This paper has designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms.
Journal ArticleDOI

Fast approximate energy minimization via graph cuts

TL;DR: This work presents two algorithms based on graph cuts that efficiently find a local minimum with respect to two types of large moves, namely expansion moves and swap moves that allow important cases of discontinuity preserving energies.
Journal ArticleDOI

Emergence of simple-cell receptive field properties by learning a sparse code for natural images

TL;DR: It is shown that a learning algorithm that attempts to find sparse linear codes for natural scenes will develop a complete family of localized, oriented, bandpass receptive fields, similar to those found in the primary visual cortex.
Book

Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods

TL;DR: In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist.
Journal ArticleDOI

Removing camera shake from a single photograph

TL;DR: This work introduces a method to remove the effects of camera shake from seriously blurred images, which assumes a uniform camera blur over the image and negligible in-plane camera rotation.
Related Papers (5)