scispace - formally typeset
Journal ArticleDOI

Single image dehazing

Raanan Fattal
- Vol. 27, Iss: 3, pp 72
TLDR
Results demonstrate the new method abilities to remove the haze layer as well as provide a reliable transmission estimate which can be used for additional applications such as image refocusing and novel view synthesis.
Abstract
In this paper we present a new method for estimating the optical transmission in hazy scenes given a single input image. Based on this estimation, the scattered light is eliminated to increase scene visibility and recover haze-free scene contrasts. In this new approach we formulate a refined image formation model that accounts for surface shading in addition to the transmission function. This allows us to resolve ambiguities in the data by searching for a solution in which the resulting shading and transmission functions are locally statistically uncorrelated. A similar principle is used to estimate the color of the haze. Results demonstrate the new method abilities to remove the haze layer as well as provide a reliable transmission estimate which can be used for additional applications such as image refocusing and novel view synthesis.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Single Image Haze Removal Using Dark Channel Prior

TL;DR: A simple but effective image prior - dark channel prior to remove haze from a single input image is proposed, based on a key observation - most local patches in haze-free outdoor images contain some pixels which have very low intensities in at least one color channel.

Single Image Haze Removal Using Dark Channel Prior

TL;DR: This thesis develops an effective but very simple prior, called the dark channel prior, to remove haze from a single image, and thus solves the ambiguity of the problem.
Proceedings ArticleDOI

Visibility in bad weather from a single image

TL;DR: A cost function in the framework of Markov random fields is developed, which can be efficiently optimized by various techniques, such as graph-cuts or belief propagation, and is applicable for both color and gray images.
Journal ArticleDOI

DehazeNet: An End-to-End System for Single Image Haze Removal

TL;DR: DehazeNet as discussed by the authors adopts convolutional neural network-based deep architecture, whose layers are specially designed to embody the established assumptions/priors in image dehazing.
Journal ArticleDOI

A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior

TL;DR: A simple but powerful color attenuation prior for haze removal from a single input hazy image is proposed and outperforms state-of-the-art haze removal algorithms in terms of both efficiency and the dehazing effect.
References
More filters
Journal ArticleDOI

Independent component analysis: algorithms and applications

TL;DR: The basic theory and applications of ICA are presented, and the goal is to find a linear representation of non-Gaussian data so that the components are statistically independent, or as independent as possible.
Proceedings ArticleDOI

Recovering high dynamic range radiance maps from photographs

TL;DR: This work discusses how this work is applicable in many areas of computer graphics involving digitized photographs, including image-based modeling, image compositing, and image processing, and demonstrates a few applications of having high dynamic range radiance maps.
Proceedings ArticleDOI

Visibility in bad weather from a single image

TL;DR: A cost function in the framework of Markov random fields is developed, which can be efficiently optimized by various techniques, such as graph-cuts or belief propagation, and is applicable for both color and gray images.
Journal ArticleDOI

An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data

TL;DR: In this paper, an improved dark-object subtraction technique is demonstrated that allows the user to select a relative atmospheric scattering model to predict the haze values for all the spectral bands from a selected starting band haze value.
Proceedings ArticleDOI

Image and depth from a conventional camera with a coded aperture

TL;DR: A simple modification to a conventional camera is proposed to insert a patterned occluder within the aperture of the camera lens, creating a coded aperture, and introduces a criterion for depth discriminability which is used to design the preferred aperture pattern.