scispace - formally typeset
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TLDR
A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract
The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
References
More filters
Journal ArticleDOI

80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition

TL;DR: For certain classes that are particularly prevalent in the dataset, such as people, this work is able to demonstrate a recognition performance comparable to class-specific Viola-Jones style detectors.

80 million tiny images : a large dataset for non-parametric object and scene recognition

TL;DR: In this paper, a large dataset of 79,302,017 images collected from the Internet is used to explore the visual world with the aid of a variety of non-parametric methods.
Book ChapterDOI

TextonBoost : joint appearance, shape and context modeling for multi-class object recognition and segmentation

TL;DR: A new approach to learning a discriminative model of object classes, incorporating appearance, shape and context information efficiently, is proposed, which is used for automatic visual recognition and semantic segmentation of photographs.
Proceedings ArticleDOI

In defense of Nearest-Neighbor based image classification

TL;DR: It is argued that two practices commonly used in image classification methods, have led to the inferior performance of NN-based image classifiers: Quantization of local image descriptors (used to generate "bags-of-words ", codebooks) and Computation of 'image-to-image' distance, instead of ' image- to-class' distance.
Proceedings ArticleDOI

Learning object categories from Google's image search

TL;DR: A new model, TSI-pLSA, is developed, which extends pLSA (as applied to visual words) to include spatial information in a translation and scale invariant manner, and can handle the high intra-class variability and large proportion of unrelated images returned by search engines.
Related Papers (5)