scispace - formally typeset
Journal ArticleDOI

Imposing maximum length scale in topology optimization

Reads0
Chats0
TLDR
In this article, a technique for imposing maximum length scale on features in continuum topology optimization is presented, where the design domain is searched and local constraints prevent the formation of features that are larger than the prescribed maximum-length scale.
Abstract
This paper presents a technique for imposing maximum length scale on features in continuum topology optimization. The design domain is searched and local constraints prevent the formation of features that are larger than the prescribed maximum length scale. The technique is demonstrated in the context of structural and fluid topology optimization. Specifically, maximum length scale criterion is applied to (a) the solid phase in minimum compliance design to restrict the size of structural (load-carrying) members, and (b) the fluid (void) phase in minimum dissipated power problems to limit the size of flow channels. Solutions are shown to be near 0/1 (void/solid) topologies that satisfy the maximum length scale criterion. When combined with an existing minimum length scale methodology, the designer gains complete control over member sizes that can influence cost and manufacturability. Further, results suggest restricting maximum length scale may provide a means for influencing performance characteristics, such as redundancy in structural design.

read more

Citations
More filters
Journal ArticleDOI

Topology optimization approaches: A comparative review

TL;DR: An overview, comparison and critical review of the different approaches to topology optimization, their strengths, weaknesses, similarities and dissimilarities and suggests guidelines for future research.
Journal ArticleDOI

A survey of structural and multidisciplinary continuum topology optimization: post 2000

TL;DR: Topology optimization is the process of determining the optimal layout of material and connectivity inside a design domain this paper, which is the same as the problem of finding the optimal configuration of a set of components.
Journal ArticleDOI

Level-set methods for structural topology optimization: a review

TL;DR: The convergence behavior of the optimization process is discussed, as well as control over the slope and smoothness of thelevel-set function, hole nucleation and the relation of level-set methods to other topology optimization methods.
Journal ArticleDOI

Topology Optimization in Aircraft and Aerospace Structures Design

TL;DR: In this article, a survey of recent advances of topology optimization techniques applied in aircraft and aerospace structures design is presented, including standard material layout for airframe structures, layout design of stiffener ribs for aircraft panels, multi-component layout design for aerospace structural systems, and multi-fasteners design for assembled aircraft structures.
References
More filters
Journal ArticleDOI

The method of moving asymptotes—a new method for structural optimization

TL;DR: In this article, a new method for non-linear programming in general and structural optimization in particular is presented, in which a strictly convex approximating subproblem is generated and solved.
Journal ArticleDOI

Optimal shape design as a material distribution problem

TL;DR: In this article, various ways of removing this discrete nature of the problem by the introduction of a density function that is a continuous design variable are described. But none of these methods can be used for shape optimization in a general setting.
Journal ArticleDOI

Morphology-based black and white filters for topology optimization

TL;DR: In this article, the physical stiffness of an element is based on a function of the design variables of the neighboring elements, and a new class of morphology-based restriction schemes that work as density filters is introduced.
Journal ArticleDOI

On the Design of Compliant Mechanisms Using Topology Optimization

TL;DR: In this paper, the authors present a method for optimal design of compliant mechanism topologies based on continuum-type topology optimization techniques and find the optimal mechanism topology within a given design domain and a given position and direction of input and output forces.
Journal ArticleDOI

Achieving minimum length scale in topology optimization using nodal design variables and projection functions

TL;DR: In this paper, a methodology for imposing a minimum length scale on structural members in discretized topology optimization problems is described, where nodal variables are implemented as the design variables and are projected onto element space to determine the element volume fractions that traditionally define topology.
Related Papers (5)