scispace - formally typeset
Journal ArticleDOI

Optimal shape design as a material distribution problem

Martin P. Bendsøe
- 01 Dec 1989 - 
- Vol. 1, Iss: 4, pp 193-202
TLDR
In this article, various ways of removing this discrete nature of the problem by the introduction of a density function that is a continuous design variable are described. But none of these methods can be used for shape optimization in a general setting.
Abstract
Shape optimization in a general setting requires the determination of the optimal spatial material distribution for given loads and boundary conditions. Every point in space is thus a material point or a void and the optimization problem is a discrete variable one. This paper describes various ways of removing this discrete nature of the problem by the introduction of a density function that is a continuous design variable. Domains of high density then define the shape of the mechanical element. For intermediate densities, material parameters given by an artificial material law can be used. Alternatively, the density can arise naturally through the introduction of periodically distributed, microscopic voids, so that effective material parameters for intermediate density values can be computed through homogenization. Several examples in two-dimensional elasticity illustrate that these methods allow a determination of the topology of a mechanical element, as required for a boundary variations shape optimization technique.

read more

Citations
More filters
Journal ArticleDOI

A level set method for structural topology optimization

TL;DR: A new approach to structural topology optimization that represents the structural boundary by a level set model that is embedded in a scalar function of a higher dimension that demonstrates outstanding flexibility of handling topological changes, fidelity of boundary representation and degree of automation.
Journal ArticleDOI

Material interpolation schemes in topology optimization

TL;DR: In this article, the authors analyze and compare the various approaches to this concept in the light of variational bounds on effective properties of composite materials, and derive simple necessary conditions for the possible realization of grey-scale via composites, leading to a physical interpretation of all feasible designs as well as the optimal design.
Journal ArticleDOI

A 99 line topology optimization code written in Matlab

TL;DR: It is shown that only 49 Matlab input lines are required for solving a well-posed topology optimization problem and by adding three additional lines, the program can solve problems with multiple load cases.
Journal ArticleDOI

Topology optimization approaches: A comparative review

TL;DR: An overview, comparison and critical review of the different approaches to topology optimization, their strengths, weaknesses, similarities and dissimilarities and suggests guidelines for future research.
Journal ArticleDOI

Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima

TL;DR: The current knowledge about numerical instabilities such as checkerboards, mesh-dependence and local minima occurring in applications of the topology optimization method are summarized and the methods with which they can be avoided are listed.
References
More filters
Journal ArticleDOI

Generating optimal topologies in structural design using a homogenization method

TL;DR: In this article, the authors present a methodology for optimal shape design based on homogenization, which is related to modern production techniques and consists of computing the optimal distribution in space of an anisotropic material that is constructed by introducing an infimum of periodically distributed small holes in a given homogeneous, i.i.
Book

Asymptotic analysis for periodic structures

TL;DR: In this article, the authors give a systematic introduction of multiple scale methods for partial differential equations, including their original use for rigorous mathematical analysis in elliptic, parabolic, and hyperbolic problems, and with the use of probabilistic methods when appropriate.
Book

Non-Homogeneous Media and Vibration Theory

TL;DR: In this article, a spectral perturbation of spectral families and applications to self-adjoint eigenvalue problems are discussed, as well as the Trotter-Kato theorem and related topics.
Journal ArticleDOI

Optimal design and relaxation of variational problems, III

TL;DR: In this article, a synthesis of three subjects, namely optimal design, homogenization, and relaxation in the calculus of variations, is presented, where the underlying theme is that of oscillations, with certain definite patterns in minimizing sequences for the variational problem.
Related Papers (5)