scispace - formally typeset
Journal ArticleDOI

Improving High-Resolution Numerical Weather Simulations by Assimilating Data from an Unmanned Aerial System

TLDR
In this article, the authors demonstrated how temperature, humidity, and wind profile data from the lower troposphere obtained with a lightweight UAV can be used to improve high-resolution numerical weather simulations by four-dimensional data assimilation (FDDA).
Abstract
In this study, it is demonstrated how temperature, humidity, and wind profile data from the lower troposphere obtained with a lightweight unmanned aerial system (UAS) can be used to improve high-resolution numerical weather simulations by four-dimensional data assimilation (FDDA). The combined UAS and FDDA system is applied to two case studies of northeasterly flow situations in southwest Iceland from the international Moso field campaign on 19 and 20 July 2009. Both situations were characterized by high diurnal boundary layer temperature variation leading to thermally driven flow, predominantly in the form of sea-breeze circulation along the coast. The data assimilation leads to an improvement in the simulation of the horizontal and vertical extension of the sea breeze as well as of the local background flow. Erroneously simulated fog over the Reykjanes peninsula on 19 July, which leads to a local temperature underestimation of 8 K, is also corrected by the data assimilation. Sensitivity experime...

read more

Citations
More filters

Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model [presentation]

Jimy Dudhia
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.

The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a Micro-UAS for atmospheric boundary layer research

TL;DR: In this article, the authors present results from two recent field campaigns of the Small Unmanned Meteorological Observer (SUMO) for atmospheric boundary layer (ABL) research.
Journal ArticleDOI

On the Use of Rotary-Wing Aircraft to Sample Near-Surface Thermodynamic Fields: Results from Recent Field Campaigns

TL;DR: Recent calibration and validation procedures for thermodynamic sensors used on two rotary-wing aircraft indicated a high level of confidence in the on-board measurements, which were used to characterize the spatiotemporal variability of near-surface temperature and moisture fields as a component of two recent field campaigns.
References
More filters
Book

An Introduction to Boundary Layer Meteorology

TL;DR: In this article, the boundary layer is defined as the boundary of a boundary layer, and the spectral gap is used to measure the spectral properties of the boundary layers of a turbulent flow.

A Description of the Advanced Research WRF Version 3

TL;DR: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication.
Journal ArticleDOI

Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave

TL;DR: A rapid and accurate radiative transfer model (RRTM) for climate applications has been developed and the results extensively evaluated as discussed by the authors, which is performed using the correlated-k method: the k distributions are attained directly from the LBLRTM line-byline model, which connects the absorption coefficients used by RRTM to high-resolution radiance validations done with observations.
Journal ArticleDOI

A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes

TL;DR: In this article, a revised vertical diffusion algorithm with a nonlocal turbulent mixing coefficient in the planetary boundary layer (PBL) is proposed for weather forecasting and climate prediction models, which improves several features compared with the Hong and Pan implementation.
Journal ArticleDOI

Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity

TL;DR: In this paper, the authors address and document a number of issues related to the implementation of an advanced land surface-hydrology model in the Penn State-NCAR fifth-generation Mesoscale Model (MM5).
Related Papers (5)