scispace - formally typeset
Open AccessProceedings Article

Inductive Representation Learning on Large Graphs

TLDR
GraphSAGE as mentioned in this paper is a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings instead of training individual embedding for each node.
Abstract
Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View

TL;DR: Two methods to alleviate the over-smoothing issue of GNNs are proposed: MADReg which adds a MADGap-based regularizer to the training objective; AdaEdge which optimizes the graph topology based on the model predictions.
Posted Content

TUDataset: A collection of benchmark datasets for learning with graphs.

TL;DR: The TUDataset for graph classification and regression is introduced, which consists of over 120 datasets of varying sizes from a wide range of applications and provides Python-based data loaders, kernel and graph neural network baseline implementations, and evaluation tools.
Proceedings ArticleDOI

Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition

TL;DR: A simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D are presented and a powerful feature extractor named MS-G3D is developed based on which the model outperforms previous state-of-the-art methods on three large-scale datasets.
Proceedings ArticleDOI

Self-supervised Graph Learning for Recommendation

TL;DR: This work explores self-supervised learning on user-item graph, so as to improve the accuracy and robustness of GCNs for recommendation, and implements it on the state-of-the-art model LightGCN, which has the ability of automatically mining hard negatives.
Posted Content

Deep Graph Contrastive Representation Learning.

TL;DR: This paper proposes a novel framework for unsupervised graph representation learning by leveraging a contrastive objective at the node level, and generates two graph views by corruption and learns node representations by maximizing the agreement of node representations in these two views.
Related Papers (5)