scispace - formally typeset
Journal ArticleDOI

Instabilities and pattern formation in crystal growth

James S. Langer
- 01 Jan 1980 - 
- Vol. 52, Iss: 1, pp 1-28
TLDR
In this article, the authors examined several common modes of crystal growth and identified a few new theoretical ideas and a larger number of outstanding problems, including sidebranching and tip-splitting instabilities.
Abstract
Several common modes of crystal growth provide particularly simple and elegant examples of spontaneous pattern formation in nature. Phenomena of interest here are those in which an advancing nonfaceted solidification front suffers an instability and subsequently reorganizes itself into a more complex mode of behavior. The purpose of this essay is to examine several such situations and, in doing this, to identify a few new theoretical ideas and a larger number of outstanding problems. The systems studied are those in which solidification is controlled entirely by a single diffusion process, either the flow of latent heat away from a moving interface or the analogous redistribution of chemical constituents. Convective effects are ignored, as are most effects of crystalline anisotropy. The linear theory of the Mullins-Sekerka instability is reviewed for simple planar and spherical cases and also for a special model of directional solidification. These techniques are then extended to the case of a freely growing dendrite, and it is shown how this analysis leads to an understanding of sidebranching and tip-splitting instabilities. A marginal-stability hypothesis is introduced; and it is argued that this intrinsically nonlinear theory, if valid, permits aone to use results of linear-stability analysis to predict dendritic growth rates. The review concludes with a discussion of nonlinear effects in directional solidication. The nonplanar, cellular interfaces which emerge in this situation have much in common with convection patterns in hydrodynamics. The cellular stability problem is discussed briefly, and some preliminary attempts to do calculations in the strongly nonlinear regime are summarized.

read more

Citations
More filters
Journal ArticleDOI

Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations

TL;DR: The PSC algorithm as mentioned in this paper approximates the Hamilton-Jacobi equations with parabolic right-hand-sides by using techniques from the hyperbolic conservation laws, which can be used also for more general surface motion problems.
Journal ArticleDOI

Pattern formation outside of equilibrium

TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Journal ArticleDOI

Statistical mechanics of cellular automata

TL;DR: Analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors.
Journal ArticleDOI

Cryo-electron microscopy of vitrified specimens.

TL;DR: Water is the most abundant component of biological material, but it is systematically excluded from conventional electron microscopy, because water evaporates rapidly under the vacuum conditions of an electron microscope.
Related Papers (5)