scispace - formally typeset
Open AccessPosted Content

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Reads0
Chats0
TLDR
Zhang et al. as discussed by the authors proposed a novel visual tracking algorithm based on the representations from a discriminatively trained Convolutional Neural Network (CNN), which pretrain a CNN using a large set of videos with tracking ground-truths to obtain a generic target representation.
Abstract
We propose a novel visual tracking algorithm based on the representations from a discriminatively trained Convolutional Neural Network (CNN). Our algorithm pretrains a CNN using a large set of videos with tracking ground-truths to obtain a generic target representation. Our network is composed of shared layers and multiple branches of domain-specific layers, where domains correspond to individual training sequences and each branch is responsible for binary classification to identify the target in each domain. We train the network with respect to each domain iteratively to obtain generic target representations in the shared layers. When tracking a target in a new sequence, we construct a new network by combining the shared layers in the pretrained CNN with a new binary classification layer, which is updated online. Online tracking is performed by evaluating the candidate windows randomly sampled around the previous target state. The proposed algorithm illustrates outstanding performance compared with state-of-the-art methods in existing tracking benchmarks.

read more

Citations
More filters
Proceedings ArticleDOI

CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features

TL;DR: CutMix as discussed by the authors augments the training data by cutting and pasting patches among training images, where the ground truth labels are also mixed proportionally to the area of the patches.
Proceedings ArticleDOI

High Performance Visual Tracking with Siamese Region Proposal Network

TL;DR: The Siamese region proposal network (Siamese-RPN) is proposed which is end-to-end trained off-line with large-scale image pairs for visual object tracking and consists of SiAMESe subnetwork for feature extraction and region proposal subnetwork including the classification branch and regression branch.
Journal ArticleDOI

Learning without Forgetting

TL;DR: In this paper, the authors propose a Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities, which performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques.
Posted Content

Fully-Convolutional Siamese Networks for Object Tracking

TL;DR: In this paper, a fully-convolutional Siamese network is trained end-to-end on the ILSVRC15 dataset for object detection in video, which achieves state-of-the-art performance.
Proceedings ArticleDOI

End-to-End Representation Learning for Correlation Filter Based Tracking

TL;DR: In this paper, the Correlation Filter learner is interpreted as a differentiable layer in a deep neural network, which enables learning deep features that are tightly coupled to the correlation filter.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Posted Content

Rich feature hierarchies for accurate object detection and semantic segmentation

TL;DR: This paper proposes a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%.
Journal ArticleDOI

Object Detection with Discriminatively Trained Part-Based Models

TL;DR: An object detection system based on mixtures of multiscale deformable part models that is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges is described.
Related Papers (5)