scispace - formally typeset
Open AccessBook ChapterDOI

Learning Partially Shared Dictionaries for Domain Adaptation

TLDR
This work presents a dictionary learning based approach to tackle the problem of domain mismatch and conducts cross-domain object recognition experiments on popular benchmark datasets and shows improvement in results over the existing state of art domain adaptation approaches.
Abstract
Real world applicability of many computer vision solutions is constrained by the mismatch between the training and test domains. This mismatch might arise because of factors such as change in pose, lighting conditions, quality of imaging devices, intra-class variations inherent in object categories etc. In this work, we present a dictionary learning based approach to tackle the problem of domain mismatch. In our approach, we jointly learn dictionaries for the source and the target domains. The dictionaries are partially shared, i.e. some elements are common across both the dictionaries. These shared elements can represent the information which is common across both the domains. The dictionaries also have some elements to represent the domain specific information. Using these dictionaries, we separate the domain specific information and the information which is common across the domains. We use the latter for training cross-domain classifiers i.e., we build classifiers that work well on a new target domain while using labeled examples only in the source domain. We conduct cross-domain object recognition experiments on popular benchmark datasets and show improvement in results over the existing state of art domain adaptation approaches.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

On discrete cosine transform

TL;DR: In this article, a generalized discrete cosine transform with three parameters was proposed and its orthogonality was proved for some new cases, and a new type of discrete W transform was proposed.
Journal ArticleDOI

Projected Transfer Sparse Coding for cross domain image representation

TL;DR: A Projected Transfer Sparse Coding algorithm that learns the projection matrix, the discriminative sparse representations, and the dictionary in a unified objective function, and yields state-of-the-art results on image representation.
Proceedings ArticleDOI

Feature Projection-Based Unsupervised Domain Adaptation for Acoustic Scene Classification

TL;DR: This work proposes an unsupervised domain adaptation method for ASC based on the projection of spectro-temporal features extracted from both the source and target domain onto the principal subspace spanned by the eigenvectors of the sample covariance matrix of source-domain training data.
References
More filters
Proceedings ArticleDOI

Histograms of oriented gradients for human detection

TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Book

Compressed sensing

TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Book

A wavelet tour of signal processing

TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Proceedings ArticleDOI

Object recognition from local scale-invariant features

TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Journal ArticleDOI

Speeded-Up Robust Features (SURF)

TL;DR: A novel scale- and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features), which approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster.
Related Papers (5)