scispace - formally typeset
Open AccessJournal ArticleDOI

Linear and nonlinear waves

Graham W. Griffiths, +1 more
- 09 Jul 2009 - 
- Vol. 4, Iss: 7, pp 4308
TLDR
The study of waves can be traced back to antiquity where philosophers, such as Pythagoras, studied the relation of pitch and length of string in musical instruments and the subject of classical acoustics was laid down and presented as a coherent whole by John William Strutt in his treatise Theory of Sound.
Abstract
The study of waves can be traced back to antiquity where philosophers, such as Pythagoras (c.560-480 BC), studied the relation of pitch and length of string in musical instruments. However, it was not until the work of Giovani Benedetti (1530-90), Isaac Beeckman (1588-1637) and Galileo (1564-1642) that the relationship between pitch and frequency was discovered. This started the science of acoustics, a term coined by Joseph Sauveur (1653-1716) who showed that strings can vibrate simultaneously at a fundamental frequency and at integral multiples that he called harmonics. Isaac Newton (1642-1727) was the first to calculate the speed of sound in his Principia. However, he assumed isothermal conditions so his value was too low compared with measured values. This discrepancy was resolved by Laplace (1749-1827) when he included adiabatic heating and cooling effects. The first analytical solution for a vibrating string was given by Brook Taylor (1685-1731). After this, advances were made by Daniel Bernoulli (1700-82), Leonard Euler (1707-83) and Jean d’Alembert (1717-83) who found the first solution to the linear wave equation, see section (3.2). Whilst others had shown that a wave can be represented as a sum of simple harmonic oscillations, it was Joseph Fourier (1768-1830) who conjectured that arbitrary functions can be represented by the superposition of an infinite sum of sines and cosines now known as the Fourier series. However, whilst his conjecture was controversial and not widely accepted at the time, Dirichlet subsequently provided a proof, in 1828, that all functions satisfying Dirichlet’s conditions (i.e. non-pathological piecewise continuous) could be represented by a convergent Fourier series. Finally, the subject of classical acoustics was laid down and presented as a coherent whole by John William Strutt (Lord Rayleigh, 1832-1901) in his treatise Theory of Sound. The science of modern acoustics has now moved into such diverse areas as sonar, auditoria, electronic amplifiers, etc.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Existence of globally attracting solutions for one-dimensional viscous Burgers equation with nonautonomous forcing - a computer assisted proof

TL;DR: In this paper, the existence of globally attracting solutions of the viscous Burgers equation with periodic boundary conditions on the line for some particular choices of viscosity and non-autonomous forcing is proved.
Book ChapterDOI

Localized States and Dynamics in the Nonlinear Schrödinger/Gross-Pitaevskii Equation

TL;DR: Nonlinear dispersive wave phenomena are wave phenomena resulting from the interacting effects of nonlinearity and dispersion as discussed by the authors, which is the property that waves of different wavelengths travel at different velocities.
Journal ArticleDOI

Group and phase velocities in the free-surface visco-potential flow: New kind of boundary layer induced instability

TL;DR: In this article, the dispersion relation of the novel visco-potential formulation of the wave wave propagation has been analyzed, and it has been shown that the bottom boundary layer creates disintegrating modes in the group velocity.
Journal ArticleDOI

Macroscopic Traffic Flow Characterization for Stimuli Based on Driver Reaction

TL;DR: An improved model is presented which is based on driver reaction to forward traffic stimuli which can characterize both small and large changes in traffic more realistically.
Journal ArticleDOI

Shock Emergence in Supernovae: Limiting Cases and Accurate Approximations

TL;DR: In this article, the authors examined the dynamics of accelerating normal shocks in stratified planar atmospheres, providing accurate fitting formulae for the scaling index relating shock velocity to the initial density and for the post-shock acceleration factor as functions of the polytropic and adiabatic indices which parameterize the problem.
References
More filters
Book

The finite element method

TL;DR: In this article, the methodes are numeriques and the fonction de forme reference record created on 2005-11-18, modified on 2016-08-08.
Book

Mathematical Methods of Classical Mechanics

TL;DR: In this paper, Newtonian mechanics: experimental facts investigation of the equations of motion, variational principles Lagrangian mechanics on manifolds oscillations rigid bodies, differential forms symplectic manifolds canonical formalism introduction to pertubation theory.
Book

Linear and Nonlinear Waves

G. B. Whitham
TL;DR: In this paper, a general overview of the nonlinear theory of water wave dynamics is presented, including the Wave Equation, the Wave Hierarchies, and the Variational Method of Wave Dispersion.
Journal ArticleDOI

Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method

TL;DR: In this article, a second-order extension of the Lagrangean method is proposed to integrate the equations of ideal compressible flow, which is based on the integral conservation laws and is dissipative, so that it can be used across shocks.
Book

Finite Volume Methods for Hyperbolic Problems

TL;DR: The CLAWPACK software as discussed by the authors is a popular tool for solving high-resolution hyperbolic problems with conservation laws and conservation laws of nonlinear scalar scalar conservation laws.