scispace - formally typeset
Open AccessJournal ArticleDOI

Linear and nonlinear waves

Graham W. Griffiths, +1 more
- 09 Jul 2009 - 
- Vol. 4, Iss: 7, pp 4308
TLDR
The study of waves can be traced back to antiquity where philosophers, such as Pythagoras, studied the relation of pitch and length of string in musical instruments and the subject of classical acoustics was laid down and presented as a coherent whole by John William Strutt in his treatise Theory of Sound.
Abstract
The study of waves can be traced back to antiquity where philosophers, such as Pythagoras (c.560-480 BC), studied the relation of pitch and length of string in musical instruments. However, it was not until the work of Giovani Benedetti (1530-90), Isaac Beeckman (1588-1637) and Galileo (1564-1642) that the relationship between pitch and frequency was discovered. This started the science of acoustics, a term coined by Joseph Sauveur (1653-1716) who showed that strings can vibrate simultaneously at a fundamental frequency and at integral multiples that he called harmonics. Isaac Newton (1642-1727) was the first to calculate the speed of sound in his Principia. However, he assumed isothermal conditions so his value was too low compared with measured values. This discrepancy was resolved by Laplace (1749-1827) when he included adiabatic heating and cooling effects. The first analytical solution for a vibrating string was given by Brook Taylor (1685-1731). After this, advances were made by Daniel Bernoulli (1700-82), Leonard Euler (1707-83) and Jean d’Alembert (1717-83) who found the first solution to the linear wave equation, see section (3.2). Whilst others had shown that a wave can be represented as a sum of simple harmonic oscillations, it was Joseph Fourier (1768-1830) who conjectured that arbitrary functions can be represented by the superposition of an infinite sum of sines and cosines now known as the Fourier series. However, whilst his conjecture was controversial and not widely accepted at the time, Dirichlet subsequently provided a proof, in 1828, that all functions satisfying Dirichlet’s conditions (i.e. non-pathological piecewise continuous) could be represented by a convergent Fourier series. Finally, the subject of classical acoustics was laid down and presented as a coherent whole by John William Strutt (Lord Rayleigh, 1832-1901) in his treatise Theory of Sound. The science of modern acoustics has now moved into such diverse areas as sonar, auditoria, electronic amplifiers, etc.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Vehicular mobility patterns and their applications to Internet-of-Vehicles: a comprehensive survey

TL;DR: In this paper , the authors present a survey of vehicular mobility models, with a focus on recent advances in the last decade, and propose a requirement-model-application framework in the IoV or general communication and transportation networks.
Journal ArticleDOI

Numerical study of the generalised Klein–Gordon equations

TL;DR: In this paper, an approximate set of equations describing water wave propagating in deep water is discussed, which possess a variational formulation, as well as a canonical Hamiltonian and multi-symplectic structures.
Posted Content

Analytical Properties of an Ostrovsky-Whitham Type Dynamical System for a Relaxing Medium with Spatial Memory and its Integrable Regularization

TL;DR: In this article, short-wave perturbations in a relaxing medium, governed by a special reduction of the Ostrovsky evolution equation, were studied using the gradient-holonomic integrability algorithm.
Journal ArticleDOI

Group Invariant Solutions of Burgers-Poisson Equation

TL;DR: In this paper, a nonlinear dispersive wave equation Burgers-Poisson (BP) equation is considered and a classification of group invariant solutions for the BP equation by using classical Lie method is presented.
Journal ArticleDOI

A relaxation method via the born–infeld system

TL;DR: In this paper, an alternative relaxation technique for scalar conservation laws of the form ∂tu + ∂xu(1 - u)g(u) = 0, where g ∈ 𝒞1 ([0, 1]; ℝ) and 0 ∉ g(] 0, 1[).
References
More filters
Book

The finite element method

TL;DR: In this article, the methodes are numeriques and the fonction de forme reference record created on 2005-11-18, modified on 2016-08-08.
Book

Mathematical Methods of Classical Mechanics

TL;DR: In this paper, Newtonian mechanics: experimental facts investigation of the equations of motion, variational principles Lagrangian mechanics on manifolds oscillations rigid bodies, differential forms symplectic manifolds canonical formalism introduction to pertubation theory.
Book

Linear and Nonlinear Waves

G. B. Whitham
TL;DR: In this paper, a general overview of the nonlinear theory of water wave dynamics is presented, including the Wave Equation, the Wave Hierarchies, and the Variational Method of Wave Dispersion.
Journal ArticleDOI

Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method

TL;DR: In this article, a second-order extension of the Lagrangean method is proposed to integrate the equations of ideal compressible flow, which is based on the integral conservation laws and is dissipative, so that it can be used across shocks.
Book

Finite Volume Methods for Hyperbolic Problems

TL;DR: The CLAWPACK software as discussed by the authors is a popular tool for solving high-resolution hyperbolic problems with conservation laws and conservation laws of nonlinear scalar scalar conservation laws.