scispace - formally typeset
Open AccessJournal ArticleDOI

Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods

TLDR
In this paper, the authors compare the role of smoothing/regularization processes that are required in local and global differential methods for optic flow computation, and propose a simple confidence measure that minimizes energy functionals.
Abstract
Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas-Kanade technique or Bigun's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways: (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

High Accuracy Optical Flow Estimation Based on a Theory for Warping

TL;DR: By proving that this scheme implements a coarse-to-fine warping strategy, this work gives a theoretical foundation for warping which has been used on a mainly experimental basis so far and demonstrates its excellent robustness under noise.
Journal ArticleDOI

A Database and Evaluation Methodology for Optical Flow

TL;DR: This paper proposes a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms and analyzes the results obtained to date to draw a large number of conclusions.
Proceedings ArticleDOI

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume

TL;DR: PWC-Net as discussed by the authors uses the current optical flow estimate to warp the CNN features of the second image, which is processed by a CNN to estimate the optical flow, and achieves state-of-the-art performance on the MPI Sintel final pass and KITTI 2015 benchmarks.
Journal ArticleDOI

SIFT Flow: Dense Correspondence across Scenes and Its Applications

TL;DR: SIFT flow is proposed, a method to align an image to its nearest neighbors in a large image corpus containing a variety of scenes, where image information is transferred from the nearest neighbors to a query image according to the dense scene correspondence.
Proceedings ArticleDOI

Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution

TL;DR: In this paper, the Laplacian pyramid super-resolution network (LapSRN) is proposed to progressively reconstruct the sub-band residuals of high-resolution images.
References
More filters

Numerical recipes in C

TL;DR: The Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08.
Proceedings Article

An iterative image registration technique with an application to stereo vision

TL;DR: In this paper, the spatial intensity gradient of the images is used to find a good match using a type of Newton-Raphson iteration, which can be generalized to handle rotation, scaling and shearing.
Journal ArticleDOI

Determining optical flow

TL;DR: In this paper, a method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image, and an iterative implementation is shown which successfully computes the Optical Flow for a number of synthetic image sequences.
Proceedings ArticleDOI

Determining Optical Flow

TL;DR: In this article, a method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image, and an iterative implementation is shown which successfully computes the Optical Flow for a number of synthetic image sequences.
Book

Methods of Mathematical Physics

TL;DR: In this paper, the authors present an algebraic extension of LINEAR TRANSFORMATIONS and QUADRATIC FORMS, and apply it to EIGEN-VARIATIONS.
Related Papers (5)