scispace - formally typeset
Open AccessJournal ArticleDOI

Mastering the game of Go without human knowledge

Reads0
Chats0
TLDR
An algorithm based solely on reinforcement learning is introduced, without human data, guidance or domain knowledge beyond game rules, that achieves superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo.
Abstract
A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo. Starting from zero knowledge and without human data, AlphaGo Zero was able to teach itself to play Go and to develop novel strategies that provide new insights into the oldest of games. To beat world champions at the game of Go, the computer program AlphaGo has relied largely on supervised learning from millions of human expert moves. David Silver and colleagues have now produced a system called AlphaGo Zero, which is based purely on reinforcement learning and learns solely from self-play. Starting from random moves, it can reach superhuman level in just a couple of days of training and five million games of self-play, and can now beat all previous versions of AlphaGo. Because the machine independently discovers the same fundamental principles of the game that took humans millennia to conceptualize, the work suggests that such principles have some universal character, beyond human bias.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mastering the game of Go with deep neural networks and tree search

TL;DR: Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Journal ArticleDOI

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play.

TL;DR: This paper generalizes the AlphaZero approach into a single AlphaZero algorithm that can achieve superhuman performance in many challenging games, and convincingly defeated a world champion program in the games of chess and shogi (Japanese chess), as well as Go.
Journal ArticleDOI

Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)

Amina Adadi, +1 more
- 17 Sep 2018 - 
TL;DR: This survey provides an entry point for interested researchers and practitioners to learn key aspects of the young and rapidly growing body of research related to XAI, and review the existing approaches regarding the topic, discuss trends surrounding its sphere, and present major research trajectories.
Posted Content

Group Normalization

TL;DR: Group Normalization can outperform its BN-based counterparts for object detection and segmentation in COCO, and for video classification in Kinetics, showing that GN can effectively replace the powerful BN in a variety of tasks.
References
More filters
Journal ArticleDOI

The Elements of Statistical Learning: Data Mining, Inference, and Prediction

TL;DR: This section will review those books whose content and level reflect the general editorial poltcy of Technometrics.

Reinforcement Learning in Robotics: A Survey.

Jens Kober, +1 more
TL;DR: A survey of work in reinforcement learning for behavior generation in robots can be found in this article, where the authors highlight key challenges in robot reinforcement learning as well as notable successes and discuss the role of algorithms, representations and prior knowledge in achieving these successes.
Book ChapterDOI

Efficient selectivity and backup operators in Monte-Carlo tree search

TL;DR: A new framework to combine tree search with Monte-Carlo evaluation, that does not separate between a min-max phase and a Monte- carlo phase is presented, that provides finegrained control of the tree growth, at the level of individual simulations, and allows efficient selectivity.
Journal ArticleDOI

Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit

TL;DR: The model of cortical processing is presented as an electronic circuit that emulates this hybrid operation, and so is able to perform computations that are similar to stimulus selection, gain modulation and spatiotemporal pattern generation in the neocortex.
Posted Content

Reinforcement Learning with Unsupervised Auxiliary Tasks

TL;DR: This paper significantly outperforms the previous state-of-the-art on Atari, averaging 880\% expert human performance, and a challenging suite of first-person, three-dimensional \emph{Labyrinth} tasks leading to a mean speedup in learning of 10$\times$ and averaging 87\% Expert human performance on Labyrinth.
Related Papers (5)