scispace - formally typeset
Open AccessJournal ArticleDOI

Mastering the game of Go without human knowledge

Reads0
Chats0
TLDR
An algorithm based solely on reinforcement learning is introduced, without human data, guidance or domain knowledge beyond game rules, that achieves superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo.
Abstract
A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo. Starting from zero knowledge and without human data, AlphaGo Zero was able to teach itself to play Go and to develop novel strategies that provide new insights into the oldest of games. To beat world champions at the game of Go, the computer program AlphaGo has relied largely on supervised learning from millions of human expert moves. David Silver and colleagues have now produced a system called AlphaGo Zero, which is based purely on reinforcement learning and learns solely from self-play. Starting from random moves, it can reach superhuman level in just a couple of days of training and five million games of self-play, and can now beat all previous versions of AlphaGo. Because the machine independently discovers the same fundamental principles of the game that took humans millennia to conceptualize, the work suggests that such principles have some universal character, beyond human bias.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mastering the game of Go with deep neural networks and tree search

TL;DR: Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Journal ArticleDOI

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play.

TL;DR: This paper generalizes the AlphaZero approach into a single AlphaZero algorithm that can achieve superhuman performance in many challenging games, and convincingly defeated a world champion program in the games of chess and shogi (Japanese chess), as well as Go.
Journal ArticleDOI

Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)

Amina Adadi, +1 more
- 17 Sep 2018 - 
TL;DR: This survey provides an entry point for interested researchers and practitioners to learn key aspects of the young and rapidly growing body of research related to XAI, and review the existing approaches regarding the topic, discuss trends surrounding its sphere, and present major research trajectories.
Posted Content

Group Normalization

TL;DR: Group Normalization can outperform its BN-based counterparts for object detection and segmentation in COCO, and for video classification in Kinetics, showing that GN can effectively replace the powerful BN in a variety of tasks.
References
More filters
Proceedings Article

Bootstrapping from Game Tree Search

TL;DR: This paper introduces a new algorithm for updating the parameters of a heuristic evaluation function, by updating the heuristic towards the values computed by an alpha-beta search, and implemented this algorithm in a chess program Meep, using a linear heuristic function.
Book ChapterDOI

Evaluation in Go by a Neural Network Using Soft Segmentation

TL;DR: A neural network architecture is presented that is able to build a soft segmentation of a two-dimensional input that is applied to position evaluation in the game of Go.
Posted Content

Approximate Policy Iteration Schemes: A Comparison

TL;DR: This work considers the infinite-horizon discounted optimal control problem formalized by Markov Decision Processes, and shows that the NSPI(m) algorithm allows to make an overall trade-off between memory and performance.
Book ChapterDOI

On the scalability of parallel UCT

TL;DR: This paper first analyzes the single-threaded scaling of Fuego and finds that there is an upper bound on the play-quality improvements which can come from additional search, and determines the maximum amount of parallelism supported by MCTS.
Proceedings Article

Better Computer Go Player with Neural Network and Long-term Prediction

TL;DR: Against human players, the newest versions, darkfores2, achieve a stable 3d level on KGS Go Server as a ranked bot, a substantial improvement upon the estimated 4k-5k ranks for DCNN reported in Clark & Storkey (2015) based on games against other machine players.
Related Papers (5)