scispace - formally typeset
Journal ArticleDOI

Mechanisms of shale gas storage: Implications for shale gas exploration in China

TLDR
In this paper, two models were proposed to predict the variation of gas sorption capacity and total gas content over geologic time as a function of burial history, and the results showed that the changes in GSC of organic-rich shales are quite low at an elevated temperature and pressure and with the presence of moisture.
Abstract
This article reviews the mechanisms of shale gas storage and discusses the major risks or uncertainties for shale gas exploration in China. At a given temperature and pressure, the gas sorption capacities of organic-rich shales are primarily controlled by the organic matter richness but may be significantly influenced by the type and maturity of the organic matter, mineral composition (especially clay content), moisture content, pore volume and structure, resulting in different ratios of gas sorption capacity (GSC) to total organic carbon content for different shales. In laboratory experiments, the GSC of organic-rich shales increases with increasing pressure and decreases with increasing temperature. Under geologic conditions (assuming hydrostatic pressure gradient and constant thermal gradient), the GSC increases initially with depth due to the predominating effect of pressure, passes through a maximum, and then decreases because of the influence of increasing temperature at greater depth. This pattern of variation is quite similar to that observed for coals and is of great significance for understanding the changes in GSC of organic-rich shales over geologic time as a function of burial history. At an elevated temperature and pressure and with the presence of moisture, the gas sorption capacities of organic-rich shales are quite low. As a result, adsorption alone cannot protect sufficient gas for high-maturity organic-rich shales to be commercial gas reservoirs. Two models are proposed to predict the variation of GSC and total gas content over geologic time as a function of burial history. High contents of free gas in organic-rich shales can be preserved in relatively closed systems. Loss of free gas during postgeneration uplift and erosion may result in undersaturation (the total gas contents lower than the sorption capacity) and is the major risk for gas exploration in marine organic-rich shales in China.

read more

Citations
More filters
Journal ArticleDOI

Quantitative characterization of pore connectivity using NMR and MIP: A case study of the Wangyinpu and Guanyintang shales in the Xiuwu basin, Southern China

TL;DR: In this article, the pore connectivity and its primary controlling factors were investigated using a combination of field emission-scanning electron microscopy (FE-SEM), focused ion beam scanning (FIB), and nuclear magnetic resonance (NMR) for shale reservoirs.
Journal ArticleDOI

Ono–Kondo Model for Supercritical Shale Gas Storage: A Case Study of Silurian Longmaxi Shale in Southeast Chongqing, China

TL;DR: In this article, a series of Lower Silurian Longmaxi marine shale samples in southeast Chongqing, China, were collected to investigate the reservoir characteristics, and a suit of methane adsorption isotherms were fitted using a supercritical Ono-Kondo model to better understand the adorption capacity of longmaxi shale.
Journal ArticleDOI

The Silurian Qusaiba Hot Shales of Saudi Arabia: An integrated assessment of thermal maturity

TL;DR: In this article, an integrated assessment of Qusaiba Hot Shales (QHS) thermal maturity parameters, based on cores from 13 carefully selected boreholes that are believed to cover a wide maturity range (ca. 0.5 to 2.0% Ro).
References
More filters
Journal ArticleDOI

Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

TL;DR: In this article, the authors estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/acft (84.0 m 3 /m 3 ).
Journal ArticleDOI

Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale

TL;DR: In this article, the authors used scanning electron microscopy to characterize the pore system in the Barnett Shale of the Fort Worth Basin, Texas, showing that the pores in these rocks are dominantly nanometer in scale (nanopores).
Journal ArticleDOI

Fractured shale-gas systems

TL;DR: The first commercial United States natural gas production (1821) came from an organic-rich Devonian shale in the Appalachian basin this article, which is a continuous-type biogenic (predominant), thermogenic, or combined biogenic-thermogenic gas accumulations characterized by widespread gas saturation, subtle trapping mechanisms, seals of variable lithology, and relatively short hydrocarbon migration distances.
Journal ArticleDOI

The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs

TL;DR: The effect of shale composition and fabric upon pore structure and CH 4 sorption is investigated for potential shale gas reservoirs in the Western Canadian Sedimentary Basin (WCSB) as mentioned in this paper.
Related Papers (5)