scispace - formally typeset
Open AccessPosted Content

Meta-Learning with Latent Embedding Optimization

Reads0
Chats0
TLDR
In this article, a data-dependent latent generative representation of model parameters is learned and a gradient-based meta-learning is performed in a low-dimensional latent space for few-shot learning.
Abstract
Gradient-based meta-learning techniques are both widely applicable and proficient at solving challenging few-shot learning and fast adaptation problems. However, they have practical difficulties when operating on high-dimensional parameter spaces in extreme low-data regimes. We show that it is possible to bypass these limitations by learning a data-dependent latent generative representation of model parameters, and performing gradient-based meta-learning in this low-dimensional latent space. The resulting approach, latent embedding optimization (LEO), decouples the gradient-based adaptation procedure from the underlying high-dimensional space of model parameters. Our evaluation shows that LEO can achieve state-of-the-art performance on the competitive miniImageNet and tieredImageNet few-shot classification tasks. Further analysis indicates LEO is able to capture uncertainty in the data, and can perform adaptation more effectively by optimizing in latent space.

read more

Citations
More filters
Posted Content

SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning.

TL;DR: Surprisingly, simple feature transformations suffice to obtain competitive few-shot learning accuracies and it is found that a nearest-neighbor classifier used in combination with mean-subtraction and L2-normalization outperforms prior results in three out of five settings on the miniImageNet dataset.
Proceedings Article

Learning to Self-Train for Semi-Supervised Few-Shot Classification

TL;DR: A novel semi-supervised meta-learning method called learning to self-train (LST) that leverages unlabeled data and specifically meta-learns how to cherry-pick and label such unsupervised data to further improve performance is proposed.
Proceedings ArticleDOI

DPGN: Distribution Propagation Graph Network for Few-Shot Learning

TL;DR: This work proposes a novel approach named distribution propagation graph network (DPGN) for few-shot learning, which conveys both the distribution-level relations and instance- level relations in each few- shot learning task.
Posted Content

Cross-Domain Few-Shot Classification via Learned Feature-Wise Transformation

TL;DR: The core idea is to use feature-wise transformation layers for augmenting the image features using affine transforms to simulate various feature distributions under different domains in the training stage, and applies a learning-to-learn approach to search for the hyper-parameters of the feature- wise transformation layers.
Proceedings ArticleDOI

Hyperbolic Image Embeddings

TL;DR: In this paper, the authors demonstrate that in many practical scenarios, hyperbolic embeddings provide a better alternative to Euclidean and spherical embedding for few-shot learning.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.