scispace - formally typeset
Journal ArticleDOI

Metal Azolate Frameworks: From Crystal Engineering to Functional Materials

Jie-Peng Zhang, +3 more
- 08 Feb 2012 - 
- Vol. 112, Iss: 2, pp 1001-1033
Reads0
Chats0
TLDR
A comparison study of 3D Networks Based on Polypyrazolates, Metal 1,2,4-Triazolate Frameworks, and Univalent Coinage-Metal Tetrazolate Framework 1025.
Abstract
2.1.2. Low Topology/Framework Density 1003 2.1.3. Side Group Directed Superstructures 1003 2.2. Synthesis Considerations 1003 2.3. Special Properties 1004 3. Metal Imidazolate Frameworks 1004 3.1. Chains and Rings 1004 3.2. Zeolitic and Zeolite-like Frameworks 1006 3.2.1. SOD-Type Zinc(II) 2-Methylimidazolate 1007 3.3. Nonporous 4-Connected Networks 1010 3.4. Polyimidazolates 1011 4. Metal Pyrazolate Frameworks 1011 4.1. Clusters and Chains 1011 4.2. 3D Networks Based on Polypyrazolates 1012 5. Metal 1,2,4-Triazolate Frameworks 1014 5.1. Simple 3-Connected Networks 1015 5.2. Quasi-Imidazolates 1018 5.3. With Coordinative Substituents 1019 5.4. With Secondary Counterions and/or Ligands 1021 6. Metal 1,2,3-Triazolate Frameworks 1023 7. Metal Tetrazolate Frameworks 1025 7.1. Univalent Coinage-Metal Tetrazolate Frameworks 1025

read more

Citations
More filters
Journal ArticleDOI

Stable Metal-Organic Frameworks: Design, Synthesis, and Applications.

TL;DR: This review is expected to guide the design of stable MOFs by providing insights into existing structures, which could lead to the discovery and development of more advanced functional materials.
Journal ArticleDOI

Tuning the structure and function of metal–organic frameworks via linker design

TL;DR: This critical review of metal-organic frameworks (MOFs) highlights advances in MOF synthesis focusing on linker design and examples of building MOFs to reach unique properties, such as unprecedented surface area, pore aperture, molecular recognition, stability, and catalysis, through linkers are described.
Journal ArticleDOI

Methane storage in metal–organic frameworks

TL;DR: This view provides an overview of the current status of metal-organic frameworks for methane storage and highlights their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites.
Journal ArticleDOI

Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis

TL;DR: An overview of significant progress in the development of MNP/MOF composites, including various preparation strategies and characterization methods as well as catalytic applications is provided, with special emphasis on synergistic effects between the two components that result in an enhanced performance in heterogeneous catalysis.
References
More filters
Journal ArticleDOI

Functional porous coordination polymers.

TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
Journal ArticleDOI

Click Chemistry: Diverse Chemical Function from a Few Good Reactions.

TL;DR: In this paper, a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach called click chemistry is defined, enabled, and constrained by a handful of nearly perfect "springloaded" reactions.
Journal ArticleDOI

Reticular synthesis and the design of new materials

TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Related Papers (5)