scispace - formally typeset
Open AccessBook

Micromechanics: Overall Properties of Heterogeneous Materials

TLDR
In this paper, the authors introduce basic elements of elasticity theory: foundations geometric foundations, kinematic foundations, dynamic foundations, constitutive relations elastostatic problems of linear elasticity boundary value problems and extremum principles three-dimensional problems solution of singular problems.
Abstract
Part 1 Overall properties of heterogeneous solids: aggregate properties and averaging methods aggregate properties, averaging methods elastic solids with microcavities and microcracks linearly elastic solids, elastic solids with traction-free defects, elastic solids with micrcavities, elastic solids with microcracks elastic solids with micro-inclusions overall elastic modulus and compliance tensors, examples o elastic solids with elastic micro-inclusions, upper and lower bounds for overall elastic moduli, self-consistent differential and related averaging methods, Eshelby's tensor and related topics solids with periodic microstructure general properties and field equations, overall properties of solids with periodic microstructure, mirror-image decomposition of periodic fields. Part 2 Introduction to basic elements of elasticity theory: foundations geometric foundations, kinematic foundations, dynamic foundations, constitutive relations elastostatic problems of linear elasticity boundary-value problems and extremum principles three-dimensional problems solution of singular problems. Appendix: references.

read more

Citations
More filters
Journal ArticleDOI

Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites

TL;DR: In this article, the effects of particle size, particle/matrix interface adhesion and particle loading on the stiffness, strength and toughness of such particulate polymer composites are reviewed.
MonographDOI

The Theory of Composites

TL;DR: Some of the greatest scientists including Poisson, Faraday, Maxwell, Rayleigh, and Einstein have contributed to the theory of composite materials Mathematically, it is the study of partial differential equations with rapid oscillations in their coefficients Although extensively studied for more than a hundred years, an explosion of ideas in the last five decades has dramatically increased our understanding of the relationship between the properties of the constituent materials, the underlying microstructure of a composite, and the overall effective moduli which govern the macroscopic behavior as mentioned in this paper.
Journal ArticleDOI

Determination of the size of the representative volume element for random composites: statistical and numerical approach

TL;DR: In this article, a quantitative definition of the representative volume element (RVE) size is proposed, which can be associated with a given precision of the estimation of the overall property and the number of realizations of a given volume V of microstructure that one is able to consider.
Journal ArticleDOI

Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications

TL;DR: In this paper, a review of continuum-based variational formulations for describing the elastic-plastic deformation of anisotropic heterogeneous crystalline matter is presented and compared with experiments.
Journal ArticleDOI

Role of Brownian motion in the enhanced thermal conductivity of nanofluids

TL;DR: In this paper, the Brownian motion of nanoparticles at the molecular and nanoscale level is a key mechanism governing the thermal behavior of nanoparticle-fluid suspensions (nanofluids).
Related Papers (5)