scispace - formally typeset
Open AccessBook

Modern graph theory

Reads0
Chats0
TLDR
This book presents an account of newer topics, including Szemer'edi's Regularity Lemma and its use; Shelah's extension of the Hales-Jewett Theorem; the precise nature of the phase transition in a random graph process; the connection between electrical networks and random walks on graphs; and the Tutte polynomial and its cousins in knot theory.
Abstract
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed account of newer topics, including Szemer\'edi's Regularity Lemma and its use, Shelah's extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. In no other branch of mathematics is it as vital to tackle and solve challenging exercises in order to master the subject. To this end, the book contains an unusually large number of well thought-out exercises: over 600 in total. Although some are straightforward, most of them are substantial, and others will stretch even the most able reader.

read more

Citations
More filters
Journal ArticleDOI

Deterministic finite automata representation for model predictive control of hybrid systems

TL;DR: A modeling method to represent a deterministic finite automaton in the form of a linear state equation with a smaller set of binary input variables and binary linear inequalities is proposed.
Journal ArticleDOI

Stochastic Stability of Continuous Time Consensus Protocols

TL;DR: It is pointed out that expanders, sparse highly connected graphs, generate CPs whose performance remains uniformly high when the size of the network grows unboundedly, and the benefits of using random versus regular network topologies for CP design are highlighted.
Posted Content

Mechanism Design and Communication Networks

TL;DR: This paper characterizes the communication networks (directed graphs) for which, in any environment (utilities and beliefs), every incentive compatible social choice function is implementable.
Journal Article

Controlled vs. Automatic Processing: A Graph-Theoretic Approach to the Analysis of Serial vs. Parallel Processing in Neural Network Architectures.

TL;DR: The limited ability to simultaneously perform multiple tasks is one of the most salient features of human performance and a defining characteristic of controlled processing, and a graph-theoretic approach to analyzing these constraints is proposed.
Journal ArticleDOI

Flows in networks with dynamic ramification nodes

TL;DR: In this article, the velocity of the outgoing flow mass in the vertices is determined by the total incoming flow mass and by the incoming flow in the other vertices, instead of conservation of mass.