scispace - formally typeset
Open AccessBook

Modern graph theory

Reads0
Chats0
TLDR
This book presents an account of newer topics, including Szemer'edi's Regularity Lemma and its use; Shelah's extension of the Hales-Jewett Theorem; the precise nature of the phase transition in a random graph process; the connection between electrical networks and random walks on graphs; and the Tutte polynomial and its cousins in knot theory.
Abstract
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed account of newer topics, including Szemer\'edi's Regularity Lemma and its use, Shelah's extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. In no other branch of mathematics is it as vital to tackle and solve challenging exercises in order to master the subject. To this end, the book contains an unusually large number of well thought-out exercises: over 600 in total. Although some are straightforward, most of them are substantial, and others will stretch even the most able reader.

read more

Citations
More filters
Journal ArticleDOI

The maximum number of triangles in c2k+1-free graphs

TL;DR: Upper and lower bounds are proved for the maximum number of triangles in C2k+1-free graphs.
Journal ArticleDOI

Principal eigenvector of contact matrices and hydrophobicity profiles in proteins.

TL;DR: Protein sequences evolve in such a way that their average HP is close to the optimal one, implying that neutral evolution can be viewed as a kind of motion in sequence space around the optimal HP, and shows that the interactivity scale is nearly optimal both for the comparison of sequences to sequences and sequences to structures.
Journal ArticleDOI

Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions.

TL;DR: In this article, a simple and robust theoretical framework was proposed to predict material/structural phase transition (PT) of embryonic tissues from local cell connectivity using percolation theory.
Journal ArticleDOI

Convergence of a Class of Multi-Agent Systems In Probabilistic Framework

TL;DR: This paper provides a complete and rigorous proof for the fact that the overall multi-agent system will synchronize with large probability as long as the number of agents is large enough.