scispace - formally typeset
Open AccessBook

Modern graph theory

Reads0
Chats0
TLDR
This book presents an account of newer topics, including Szemer'edi's Regularity Lemma and its use; Shelah's extension of the Hales-Jewett Theorem; the precise nature of the phase transition in a random graph process; the connection between electrical networks and random walks on graphs; and the Tutte polynomial and its cousins in knot theory.
Abstract
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed account of newer topics, including Szemer\'edi's Regularity Lemma and its use, Shelah's extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. In no other branch of mathematics is it as vital to tackle and solve challenging exercises in order to master the subject. To this end, the book contains an unusually large number of well thought-out exercises: over 600 in total. Although some are straightforward, most of them are substantial, and others will stretch even the most able reader.

read more

Citations
More filters
Journal ArticleDOI

3-uniform hypergraphs avoiding a given odd cycle

TL;DR: Upper bounds for the size of 3-uniform hypergraphs avoiding a given odd cycle using the definition of a cycle due to Berge are given.
Journal ArticleDOI

Analytical properties of horizontal visibility graphs in the Feigenbaum scenario.

TL;DR: Luque et al. as mentioned in this paper provide an in depth description of the horizontal visibility treatment of the Feigenbaum scenario, together with analytical derivations that relate to the degree distributions, mean distances, clustering coefficients, etc., associated to the bifurcation cascades and their accumulation points.
Book ChapterDOI

Network Meta‐Analysis

TL;DR: Network meta-analysis (also known as multiple treatment comparison or mixed treatment comparison) seeks to combine information from all randomised comparisons among a set of treatments for a given medical condition.
Proceedings ArticleDOI

Distributed Fault Diagnosis using Sensor Networks and Consensus-based Filters

TL;DR: A network of distributed estimation agents is designed where a bank of local Kalman filters is embedded into each sensor and the diagnosis decision is performed by a distributed hypothesis testing method that relies on a belief consensus algorithm.
Journal ArticleDOI

Counting colored planar maps: Algebraicity results

TL;DR: In this article, the enumeration of properly q-colored planar maps was studied and the associated generating function is algebraic when q 0,4 is of the form 2+2cos(j@p/m), for integers j and m, including the two integer values q=2 and q=3.