scispace - formally typeset
Journal ArticleDOI

Modes of vortex formation and frequency response of a freely vibrating cylinder

Reads0
Chats0
TLDR
In this article, the transverse vortex-induced vibrations of an elastically mounted rigid cylinder in a fluid flow were studied for the first time in free vibrations, and the existence of more than one mode transition for low (m*ζ) and high (m *δ) combined mass-damping parameters was analyzed.
Abstract
In this paper, we study the transverse vortex-induced vibrations of an elastically mounted rigid cylinder in a fluid flow. We use simultaneous force, displacement and vorticity measurements (using DPIV) for the first time in free vibrations. There exist two distinct types of response in such systems, depending on whether one has a high or low combined mass–damping parameter (m*ζ). In the classical high-(m*ζ) case, an ‘initial’ and ‘lower’ amplitude branch are separated by a discontinuous mode transition, whereas in the case of low (m*ζ), a further higher-amplitude ‘upper’ branch of response appears, and there exist two mode transitions.To understand the existence of more than one mode transition for low (m*ζ), we employ two distinct formulations of the equation of motion, one of which uses the ‘total force’, while the other uses the ‘vortex force’, which is related only to the dynamics of vorticity. The first mode transition involves a jump in ‘vortex phase’ (between vortex force and displacement), ϕvortex, at which point the frequency of oscillation (f) passes through the natural frequency of the system in the fluid, f ∼ fNwater. This transition is associated with a jump between 2S [harr ] 2P vortex wake modes, and a corresponding switch in vortex shedding timing. Across the second mode transition, there is a jump in ‘total phase’, phis;total , at which point f ∼ fNvacuum. In this case, there is no jump in ϕvortex, since both branches are associated with the 2P mode, and there is therefore no switch in timing of shedding, contrary to previous assumptions. Interestingly, for the high-(m*ζ) case, the vibration frequency jumps across both fNwater and fNvacuum, corresponding to the simultaneous jumps in ϕvortex and ϕtotal. This causes a switch in the timing of shedding, coincident with the ‘total phase’ jump, in agreement with previous assumptions.For large mass ratios, m* = O(100), the vibration frequency for synchronization lies close to the natural frequency (f* = f/fN ≈ 1.0), but as mass is reduced to m* = O(1), f* can reach remarkably large values. We deduce an expression for the frequency of the lower-branch vibration, as follows:formula herewhich agrees very well with a wide set of experimental data. This frequency equation uncovers the existence of a critical mass ratio, where the frequency f* becomes large: m*crit = 0.54. When m* < m*crit, the lower branch can never be reached and it ceases to exist. The upper-branch large-amplitude vibrations persist for all velocities, no matter how high, and the frequency increases indefinitely with flow velocity. Experiments at m* < m*crit show that the upper-branch vibrations continue to the limits (in flow speed) of our facility.

read more

Citations
More filters
Journal ArticleDOI

Vortex-induced vibrations

TL;DR: In this paper, a review summarizes fundamental results and discoveries concerning vortex-induced vibration (VIV) that have been made over the last two decades, many of which are related to the push to explore very low mass and damping, and to new computational and experimental techniques that were hitherto not available.
Journal ArticleDOI

A critical review of the intrinsic nature of vortex-induced vibrations

TL;DR: A comprehensive review of the progress made during the past two decades on vortex-induced vibration (VIV) of mostly circular cylindrical structures subjected to steady uniform flow is presented in this article.
Journal ArticleDOI

Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations

TL;DR: A class of low-order models for vortex-induced vibrations is analyzed in this article, where a van der Pol equation is used to describe the near wake dynamics describing the fluctuating nature of vortex shedding and several types of linear coupling terms modelling the fluid-structure interaction are considered.
Journal ArticleDOI

An overview of modeling and experiments of vortex-induced vibration of circular cylinders

TL;DR: A review of mathematical models used to investigate vortex-induced vibration (VIV) of circular cylinders is given in this article, with a focus on single-degree-of-freedom (SFOF) models.
Journal ArticleDOI

The effect of two degrees of freedom on vortex-induced vibration at low mass and damping

TL;DR: Although there are a great many papers dedicated to the problem of a cylinder vibrating transverse to a fluid flow, the authors observes a rather dramatic departure from previous results, which would suggest a possible modification to offshore design codes.
References
More filters
Journal ArticleDOI

Particle-Imaging Techniques for Experimental Fluid Mechanics

TL;DR: A review of these methods can be found in articles by Lauterborn & Vogel (1984), Adrian (1986a), Hesselink (1988), and Dudderar et al..
Journal ArticleDOI

Digital Particle Image Velocimetry

TL;DR: In this article, the directional ambiguity associated with PIV and LSV is resolved by implementing local spatial cross-correlations between two sequential single-exposed particle images, and the recovered velocity data are used to compute the spatial and temporal vorticity distribution and the circulation of the vortex ring.
Journal ArticleDOI

Vortex formation in the wake of an oscillating cylinder

TL;DR: In this paper, it was shown that the acceleration of the cylinder each half cycle induces the roll-up of the two shear layers close to the body, and thereby the formation of four regions of vorticity each cycle.
Journal ArticleDOI

Vortex shedding from oscillating bluff bodies

TL;DR: In this paper, the authors present a comprehensive review of vortex shedding in two-dimensional bluff-body wakes and present irrespective of whether the separating boundary layers are laminar or turbulent, and if the body is flexible this can cause oscillations.
Journal ArticleDOI

Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping

TL;DR: In this paper, the authors showed that there exist two distinct types of response in a very low mass and damping regime, depending on whether one has a low combined mass-damping parameter (low m*ζ), or a high mass-ding parameter (highm*δ).
Related Papers (5)