scispace - formally typeset
Journal ArticleDOI

Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption

Reads0
Chats0
TLDR
In this paper, the authors reported data from infrared absorption (FTIR) and X-ray photoelectron spectroscopies that correlate the molecular conformation of oligo(ethylene glycol) (OEG)-terminated self-assembled alkanethiolate monolayers (SAMs) with the ability of these films to resist protein adsorption.
Abstract
We report data from infrared absorption (FTIR) and X-ray photoelectron spectroscopies that correlate the molecular conformation of oligo(ethylene glycol) (OEG)-terminated self-assembled alkanethiolate monolayers (SAMs) with the ability of these films to resist protein adsorption. We studied three different SAMs of alkanethiolates on both evaporated Au and Ag surfaces. The SAMs were formed from substituted 1-undecanethiols with either a hydroxyl-terminated hexa(ethylene glycol) (EG6-OH) or a methoxy-terminated tri(ethylene glycol) (EG3-OMe) end group, or a substituted 1-tridecanethiol chain with a methoxy-terminated tri(ethylene glycol) end group and a −CH2OCH3 side chain at the C-12 atom (EG[3,1]-OMe). The infrared data of EG6-OH-terminated SAMs on both Au and Ag surfaces reveal the presence of a crystalline helical OEG phase, coexisting with amorphous OEG moieties; the EG[3,1]-OMe-terminated alkanethiolates on Au and Ag show a lower absolute coverage and greater disorder than the two other compounds. The...

read more

Citations
More filters
Journal ArticleDOI

Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms.

TL;DR: The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed and ongoing research in this area should result in the development of even better antifouling materials in the future.
Journal ArticleDOI

Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications

TL;DR: Mixed-charge materials have been shown to be equivalent to zwitterionic materials in resisting nonspecific protein adsorption when they are uniformly mixed at the molecular scale.
Journal ArticleDOI

A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein

TL;DR: In this paper, the authors used surface plasmon resonance spectroscopy and self-assembled monolayers (SAMs) to determine the characteristics of functional groups that give surfaces the ability to resist the nonspecific adsorption of proteins from solution.
Journal ArticleDOI

Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake.

TL;DR: This study establishes principles for the rational design of clinically useful nanomaterials by investigating the role of size and surface chemistry in mediating serum protein adsorption to gold nanoparticles and their subsequent uptake by macrophages.
References
More filters
Book

The infra-red spectra of complex molecules

TL;DR: In this article, the authors present a survey of research work in physics, physical sciences, and physical chemistry, focusing on physics, chemistry, physics, and biology. But they do not discuss their work in this paper.
Journal ArticleDOI

Formation and Structure of Self-Assembled Monolayers.

Abraham Ulman
- 20 Jun 1996 - 
TL;DR: Monolayers of alkanethiolates on gold are probably the most studied SAMs to date and offer the needed design flexibility, both at the individual molecular and at the material levels, and offer a vehicle for investigation of specific interactions at interfaces, and of the effect of increasing molecular complexity on the structure and stability of two-dimensional assemblies.
Journal ArticleDOI

Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000 eV range

TL;DR: In this article, the electron inelastic mean free paths (IMFPs) of 14 organic compounds were computed for a group of 14 compounds: 26-n-paraffin, adenine, β-carotene, bovine plasma albumin, deoxyribonucleic acid, diphenylhexatriene, guanine, kapton, polyacetylene, poly(butene-1-sulfone), polyethylene, polymethylmethacrylate, polystyrene and poly(2-vinyl
Journal ArticleDOI

Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers of n- Alkanethiols on the Coinage Metal Surfaces, Cu, Ag, Au'

TL;DR: In this paper, an analysis of the IR data using numerical simulations based on an average single chain model suggests that the alkyl chains in monolayers on silver are all-trans zig-zag and canted by - 12' from the normal to the surface.
Related Papers (5)